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Abstract. The periodogram function is widely used to estimate the
spectral density of time series processes and it is well-known that this
function is also very sensitive to outliers. In this context, this paper
deals with robust estimation functions to estimate the spectral den-
sity of univariate and periodic time series with short and long-memory
properties. The two robust periodogram functions discussed and com-
pared here were previously explicitly and analytically derived in Fajardo
et al. (2018), Reisen et al. (2017) and Fajardo et al. (2009) in the
case of long-memory processes. The first two references introduce the
robust periodogram based on M-regression estimator. The third refer-
ence is based on the robust autocovariance function introduced in Ma and
Genton (2000) and studied theoretically and empirically in Lévy-Leduc
et al. (2011). Here, the theoretical results of these estimators are dis-
cussed in the case of short and long-memory univariate time series and
periodic processes. A special attention is given to the M-periodogram for
short-memory processes. In this case, Theorem 1 and Corollary 1 derive
the asymptotic distribution of this spectral estimator. As the applica-
tion of the methodologies, robust estimators for the parameters of AR,
ARFIMA and PARMA processes are discussed. Their finite sample size
properties are addressed and compared in the context of absence and
presence of atypical observations. Therefore, the contributions of this
paper come to fill some gaps in the literature of modeling univariate and
periodic time series to handle additive outliers.

Keywords: Time series + M-estimation * @ y-estimation -
Long-memory - Periodic processes - Robustness

1 Introduction

It is well known that outlying observations may completely destroy most of the
standard estimators and several authors developed robust approaches in order to
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mitigate the impact of additive outliers, specially in time series models which is
the process considered in this paper. However, most of the work is devoted to the
robust estimation of the location, scale and other statistical tools. In this direc-
tion, the classical periodogram is the natural estimator of the spectral density of
a time series and recent studies indicate that the periodogram is highly sensitive
to the presence of outliers, and, thus, it becomes useless in any sub-sequential
analysis. As a viable approach to attenuate this issue, the M-regression method
applied to build alternative spectral estimators given in Fajardo et al. (2018)
and Reisen et al. (2017) and the Qy-periodogram introduced in Fajardo et al.
(2009) are some methodologies proposed recently in the literature of time series
to handle additive outliers.

The M-periodogram is discussed in Fajardo et al. (2018) and Reisen et al.
(2017) for the long-memory time series. The short-range process was still an
open problem and is one main contribution of this paper. The asymptotic prop-
erty of the M-periodogram is derived for the process which is identified to have
short-memory property such as an ARMA model (Theorem 1). As a second con-
tribution of this paper, the recent results given Fajardo et al. (2018) and Reisen
et al. (2017), for long-memory model, are summarized and these methods are
compared empirically with @ y-periodogram and the classical periodogram which
is widely used in modelling time series data. Here, these methods are empirically
studied and compared in time series with and without additive outliers with the
aim to verify their finite sample size robustness properties, that is, to verify their
capacity to accommodate the additive outlier’s effect.

The use of M- and @ n-periodograms in periodic ARMA (PARMA) models
is also discussed here in the context of handling atypical or aberrant observations
(additive outliers). This becomes the third contribution of this paper.

This paper is organized as follows: Sect.2 discusses robust periodograms
based on M-regression method and @un function for short and long-memory
time series. Section 3 presents some simulation results for the methods discussed
in Sect.2. Section4 gives some applications of the alternative periodograms in
short and long-memory and periodic processes.

2 Robust Periodograms

Let {Y;}+cz be a second order stationary process. Since this paper deals with
short and long-memory processes, additional assumptions on the process {Y; }+ez
will be given in the sequel of the paper. For a sample {Y7, Y2, ..., Y }, the classical

periodogram function, at the Fourier frequency A\; = 27j/N,j=1,...,[N/2], is
defined as
1 |& ’
IN()\j) = m 2 Yk exp(ik:)\j) (1)

Next subsections deal with alternative periodogram functions which present sim-
ilar performance (from theoretical and empirical meaning) to Iy (A\), A € (—m, 7),
but with robustness property against additive outliers and asymmetric and
heavy-tail distributions.
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2.1 M-periodogram

One alternative way to derive the periodogram function In(}A;) is based on the
Least Square (LS) estimates of a two-dimensional vector 3’ = (3(1), 3(?)) in the
linear regression model

Y; = dyiB +ei = BW cos(i) + BP sin(iN;) + ¢, 1<i< N, BER?, (2)

where g; denotes the deviation of Y; from cj,3 and E(g;) = 0 and E(¢?) < oo.
In the sequel (g;) is assumed to be a function of a stationary Gaussian process,
see (10) for a precise definition. Then,

f)’IJ:,S( = Arg mlnz — (A )B)?, (3)
BeR? i=1
where
i) = (cos(idy) siniry)) (1)

The solution of (3) is
B ) = (C'C) ey (5)
where Y = (Y3,...,Yn)’, C and C'C are defined by

cos(A;) sin(Aj)
cos(2);) sin(2X;)

cos(N ;) sin(NA;)
and

I E:A;lcos(kAj)2 E:A;lcos(kkj)sin(kAj) B {Y
c'C= (Zg_l l:jos(k'/\j) Sin(k/\j) k Eszl Sin(k/\j)Q > = Id, (7)

where Ids is the identity matrix 2 by 2. Hence,

N N /
A LS 2 2 ]
Bn (Nj) = NC’Y =% <§ V), cos(kA;) § Ys sm(mj)>
k=1 k=1

ALS, ALS,
= (B M), B () ®)
In view of (1),

N  .Ls N / -1s,a1 ALS, (2
Iv(A) = I8N ODIP = o (B P00 + (B P 00)?) = I () |
(9)
. . L ALS,(1)
where | - || denotes the classical Euclidean norm and By (A;) = (By
(Aj)s A]I(,S’@)()\j))’ is the least square estimates of 3 = (81, () see, for exam-
ple, Fajardo et al. (2018) and Reisen et al. (2017) and references therein. Note

that In(A;) (9) can be derived for different choices of ¢;, ¢ =1,..., N.
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It is supposed here that

&i = G(m) - (10)
In (10), G is a non null real-valued and skew symmetric measurable function (i.e.
G(—z) = —G(x), for all z) and (n;);>1 is a stationary Gaussian process with

zero mean and unit variance. Additional assumptions of (7;);>1 will be given in
the sequel of the paper.
Let ¢(.) be a function satisfying the following assumptions.

(A1) 0 < E[¢)%(g1)] < 0.

(A2) The function 1 is absolutely continuous with its almost everywhere
derivative ¢’ satisfying E[|¢)'(¢1)]] < oo and such that the function z +—
E[|¢/'(e1 — 2z) — ¥'(e1)]] is continuous at zero.

(A3) ¢ is nondecreasing, E[¢'(1)] > 0 and E[¢'(£1)?] < oc.

(A4) ¢ is skew symmetric, i.e. (—z) = —(x), for all .

- M
It is now introduced the M-periodogram based on the M-estimator 3 of the

parameter 3 defined in Eq. (2). The M-estimator ﬁ% = (A](\})ﬁ](\?))’ is defined
as the solution (¢1,t2) of

Zcos(i)\j) (Y;—cos(iA;)t1) = 0 and Zsin(i)\j) P(Y; —sin(iX;)t2) = 0. (11)

ﬂA](\}) and Bﬁ) can be also seen as the minimizers with respect to t; and to,
respectively, of

N
Zsm(mj) Y(Y; — sin(i);)t2)]

=1

N
Z cos(iX;) ¥(Y; — cos(iA;)t1)| and (12)

where 1 satisfies the same assumptions as in Koul and Surgailis (2000). By
analogy to (9), the robust periodogram I (\;) at A\; = 2mj/N,j =1,...,[N/2],
is defined by

WO = S IBR DI = 5 (BP0 + BP00?). (13)

2.1.1 M-periodogram in Short-Memory Processes

In this subsection the asymptotic properties of Bl\]\/; are established in the short-
range dependence framework. For this, the following assumptions are introduced.
This result helps to establish the theoretical properties of the robust periodogram
I given in Corollary 1.
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(A5) Let n, t € Z, be i.i.d. standard Gaussian random variables and let a;
be real numbers such that .- |a;| < oo and ag = 1. Then,

g = E AjTi—j-
Jj=0

(A6) 1 is the Huber function that is ¢(x) = max[min(z, ¢), —¢], for all z in
R, where c is a positive constant.

Theorem 1. Assume that (A5) and (A6) hold and that 3 = 0 in (2) so that
Y; =¢;. Then, for any fized j, Bj\v/[ defined by (12) satisfies

TE@ ~ Fe)BN(y) -5 N (0.A0), N — 00

where F is the c.d.f. of &1 and
D cos(kA;) sin(kA;)
A= %EW&OWW} (—Sin(k‘/\j) cos(mj)> ‘

Theorem 1 is proved in Sect. 5.

Corollary 1. Under the assumptions of Theorem 1, IN (\;) defined in (13) sat-
isfies for any fixed j,
X2 + Y2
MO, 2
YO e~ FCaR

as N — oo,

where
( ZE{@Z) €0)(e)} cos(kA; )) ( ZE{’I[J €0)P(e)} cos(kX; ))
kez kezZ

and

Cov(X,Y) ZE{’(/) €0)Y(ek) }sin(kA;) .

kEZ

The proof of Corollary1 is a straightforward consequence of Theorems 1
and (13).

2.1.2 M-periodogram for Long-Memory Processes

Now, consider the following assumption for (1;);>1 in the case of long-memory
process. The results in this subsection are well detailed in Fajardo et al. (2018).

(A7) (n:;)i>1 is a stationary zero-mean Gaussian process with covariances
p(k) = E(mngr1) satisfying:

p(0) =1and p(k) =k PL(k), 0<D <1,
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where the function L is slowly varying at infinity and is positive for large k.
Recall that a slowly varying function L(z), x > 0 is such that L(xt)/L(x) — 1,
as x — oo for any t > 0. Constants and logarithms are example of slowly
varying functions.

Moreover, the spectral density f of (1;);>1 can be expressed as:

FO) = 1= exp(=1N)| 72 f*(N) (14)

where d € (0,1/2) and f* is an even, positive, continuous function on (—, 7],
bounded above and bounded away from zero.

Note that
D=1-2d, (15)

where D is defined in Assumption (A7) and d is the standard long-memory
parameter notation given in the literature of long-memory models. The fact
that (1;);>1 is required to satisfy (A7) essentially means that both L(z), z > 1
and f*(A\), A in (—m, 7] satisfy some smoothness properties.

Theorem 2. Assume that (A7), (A1), (A2), (AS) and (A4) hold and that 3 =0
in (2) so that Y; = €;. Then, for any fized j, ,BN( ;) defined by (12) satisfies

N M cos(i;) _
\/;BN()\] w’(a1)] {\/>Z (sm(zA )) m} + op(NO=P)/2) 45 N — o0, (16)

where J; = E[Y(G(n))n] # 0, n being a standard Gaussian random variable and
D =1-2d. Moreover,

~ M d J2 =~
NP2\ SN <0, Wr) , N -, (17)
where
P= Jim % S em)ekiAolk - ) (18)
<k <N
= 8 x (27m7) 24 f*(0) (%1 £02> . (19)

In Relation (18), the vector cni(A;) is defined in (4),

’ _l/ sin?(A/2) | A [ A—l/ sin(\/2) A ‘QddA
YT on Je @m = N2 |27 7 Jr 215 — N)(27j + \) | 27) (2’0)

and

’ _l/ sin?(A/2) | A |7 A+3/ sin®()/2) RN N
2T n Je @mi = N2 |27 7 Jp (215 — N)(27j + \) | 27) '
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Corollary 2. Under the assumptions of Theorem 2, the periodogram I defined
in (13) satisfies
NPUMA) -5 (224 72), as N — o0, (22)

where (Z1,Z2) is a zero-mean uncorrelated Gaussian vector with covariance

matriz equal to
J? ~
— T 23
S B ) %)

with T defined in (18).

Theorem 2 and Corollary 2 are proved in Fajardo et al. (2018).

2.2 Qpn-periodogram

Another possible approach to obtain the classical periodogram (1) is to write it
in terms of the sample autocovariance function

N-1
1 ~
)= Y A cos(hn,). (21)
h=—(N—1)
where \; = 27j/N,j=1,...,[N/2] and 7(h) is the classical sample autocovari-

ance function for a sample {Y7,...,Yn} .
A straightforward approach to robustify (24) is to plug in a robust autoco-
variance function replacing the classical one. This methodology is now addressed.
For a sample 1, ...,z y Rousseeuw and Croux (1993) proposed a robust scale
estimator function Qu(-) which is based on the 7th order statistic of (I;] ) dis-
tances {|z; — x|, j < k}, and can be written as

Qn () =k x{|lz; — 21l < k}(r), (25)

where & is a constant used to guarantee consistency (k = 2.2191 for the Gaussian
distribution) and 7 = |((§) +2)/4] + 1. The above function can be evaluated
using the algorithm proposed by Croux and Rousseeuw (1992), which is compu-
tationally efficient.

Based on Qn(-), Ma and Genton (2000) proposed a highly robust estimator
for the autocovariance function:

o (1) = § (@44 v) = Q4= V)], (26)

where u and v are vectors containing the initial N —/ and the final N — h obser-
vations of 1, ..., xn, respectively. The robust estimator for the autocorrelation

function is

~ _ ron(utv) = Q% (u—v)
Pl T ) T @) 0

It can be shown that |pg, (h)| <1 for all h.
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Now, returning to (24), the robust Q y-periodogram for a sample {Y7, ..., Y }
is defined by

N—1
1 ~
IRNA) = 5= Y. Faw(h)cos(h)y), (28)
h=—(N—-1)
where \; = 27j/N,j=1,...,[N/2].
The theoretical properties of I]%N are still under study. Therefore, in the

sequel, the asymptotic properties of 4, are summarized for short and long
memory processes. These are well detailed in Lévy-Leduc et al. (2011).

2.2.1 Main Asymptotic Results for Short Memory Process
In the short-memory scenario, the process under study (Y;);>1 satisfies the fol-
lowing assumption (see, also, Lévy-Leduc et al. 2011):

(A8) (Y;)i>1 is a stationary zero-mean Gaussian process with autocovariance
sequence y(h) = E(Y1Y},41) satisfying:

> (h)] < 0.

h>1

Theorem 3. Assume that (A8) holds and let h be a non negative integer. Then,
the autocovariance estimator Vg, (h) satisfies the following Central Limit Theo-
rem:

VN (Fgy (h) = v(h)) % N(0,63), N — oo,
where

5°(h) = E[C* (Y1, Yign)] +2 D BLC(YVY, X14n)C (Yiesr, Yer14n)] (29)
k=1

and the function ¢ is defined by
Ci(my) —

4y T —y
0 RY)IF [ — "% 9,8) - (0O) =~ IF|—ro—?  g,&)%.(30
{(v( ) +(h)) ( O T ) (1(0) = (h) ( e @ )} (30)

where IF is defined by

(31)

F(z,Q, ®) = & (1/4_‘1)(:E—|—1//<a) + Dz — 1/@) |

Jp 2oy + 1/k)dy

where ® and ¢ denote the c.d.f. and p.d.f. of a standard Gaussian random vari-
able, respectively with x defined in (25).

Theorem 3 is proved in Lévy-Leduc et al. (2011).
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2.2.2 Main Asymptotic Results for Long-Memory Process
The following results concern the robust autocovariance function for long-
memory process see, also, Lévy-Leduc et al. (2011).

(A9) (Y;)i>1 is a stationary zero-mean Gaussian process with autocovariance
~v(h) = E(Y1Y},41) satisfying:

v(h)=h~PL(h), 0< D <1,

where L is slowly varying at infinity and is positive for large h. Note that, as
previously stated, D =1 — 2d.

Theorem 4. Assume that (A9) holds and that L has three continuous deriva-
tives. Assume also that Li(z) = 2'LW(z) satisfy: Li(z)/z = O(1), for some
e in (0,D), as x tends to infinity, for all i = 0,1,2,3, where LY denotes the
ith derivative of L. Let h be a non negative integer. Then, Vg, (h) satisfies the
following limit theorems as N tends to infinity.

(i) If D > 1/2,
VN Fay (B) = 7(h)) 5 N(0,5%(R)),

where
5%(h) = E[C*(Y1,Y140)] + 2 Z E[C(Y1, Y140)C(Yrs1, Yiy14n)],
k>1
¢ being defined in (30).
(i) If D < 1/2,
D
D)2 g () — () -4 2O 7 1) = 2, (1))

L(N)

where (D) = B((1 — D)/2, D), B denotes the Beta function, the processes
Z1,p(+) and Z3 p(-) are defined as follows:

ZLD(t):/R Uot(u_x);@“)/?du} dB(z), 0<D<1, (32

Za2,p(t) = /; [/tw —a) P2 (- y);(D“V"‘du] dB(z)dB(y), 0< D < 1/2, (33)
R 0

and

L(N)=2L(N)+ L(N +h)(1+h/N)"P 4+ L(N —h)(1 —h/N)"P, (34)

where B is the standard Brownian motion. The symbol f’ means that the
domain of integration excludes the diagonal.

Theorem 4 is proved in Lévy-Leduc et al. (2011).
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3 Monte Carlo Simulation

In this section, small sample size experiments are conducted with the aim to
clarify the empirical performance of the spectral estimates discussed previously
in a different context such as time series with additive outliers. Based on this,
some standard questions, such as (1) what is the best method to be used in
a real application? (2) which method (if any) should be considered when deal-
ing with outliers? (3) Does the large observation (if any) make similar outlier’s
effect on the statistical time series modelling functions, that is, on the ACF and
periodogram functions? Among others, are expected to be answered or, at least,
clarified.

Let {X;}¢=1,.. n be asample from a Gaussian second order stationary process
and let {Y;}:=1 __ n be a sample of the process defined by

Y}/ = Xt + (UWt (35)

where the parameter w represents the magnitude of the outlier, and W; is a
random variable with probability distribution

PWy=-1)=P(Wy;=1)=6/2and P(W,; =0) =1-,

where E[W;] = 0 and E[W?] = Var(W;) = 6. Note that (35) is based on the
parametric models proposed by Fox (1972). W; is the product of Bernoulli(d)
and Rademacher random variables; the latter equals 1 or —1, both with proba-
bility 1/2. X; and W; are independent random variables. Note that, if w = 0.0
{Y:} is an outlier free time series.

In order to compare the performance of M- and @ y-periodogram, a Monte
Carlo investigation was carried out under different contamination scenarios. For
the simulations, the number of replications was 5000, the samples {X;} of size
N = 500 were generated according to a model autocorrelation structure, which
is given in what follows, and the contaminated data Y; were generated from (35)
with § = 0.01 for magnitudes w = 0 (no outliers) and 10.

The comparison between the methods is performed by estimating « in the
linear regression log(I(\;)) ~ const +alog(\;) + Ej, j =1,...,N%7 where I(.)
is either In(.), IM(.) or II?,N (.). The data were generated based on

X=(-Biz=y U (36)

o €t
22 TG+ D)

where ¢; is an AR(1) model, that is, ¢; = ¢e;—1 + ¢, where n, t = 1,..., N, are
ii.d. standard Gaussian random variables.

In the finite sample size investigation, the model correlation structures are
divided in two cases:

1. An AR(1) model with ¢ = 0.6 and d = 0.
2. An ARFIMA(0, d,0) model with d = 0.3.
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Figure1l displays the plots of the empirical densities of &y, , & 8% and & oy

N
for the case of AR(1) models without contamination (w = 0). Although, & x
has a slight better performance than & oy, that is, the first method and the
N

classical periodogram presented very close densities, all the methods provided
similar results showing that, even for small sample sizes, the empirical density is
very close which corroborate the theoretical results discussed previously. Based
on the asymptotic theory and the empirical results all three methods can be used
to estimate the spectral density of a time series when there is no contamination
of additive outliers. This opens an important contribution in the context that
alternative spectral estimators such as I and IIC\Q,N can be used instead of the
classical periodogram Iy in the step procedure for modelling time series data.
For example, these estimators can be an alternative tools to be used in the
Whittle function to obtain the parameter estimates. This will be also discussed
in what follows. Note that, the disadvantage of I]?,N over IV and Iy is that the
ACF using Qn(.) does not have the positive definite property.

Density
2.0

1.0

0.0
|

I I I I I
-0.8 -0.6 -0.4 -0.2 0.0

Fig. 1. Densities of a1, dl}ff[ and & oy for AR(1) models with ¢ = 0.6 and w = 0.
N

When the data is contaminated with additive outliers the scenario changes
significantly. As well known, the periodogram, which depends on the classical
autocovariance, is corrupted by the outliers. Therefore, the alternative methods
are almost unaffected. This is displayed in Fig.2 in which w = 10 and § = 0.01.
The empirical density of &, is shifted to the right side which is an expected
result since the variance increases with outliers. The empirical densities of & 8%
and & 1N remain almost unchangeable.
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o |
o
2 9o |
®»w N
[
(O] ]
a
o |
=
o |
e T T T T T

-0.6 -0.4 -0.2 0.0 0.2

Fig. 2. Densities of &1y, &;u and & oy for AR(1) models with ¢ = 0.6, § = 0.01 and
N
w = 10.

Density

0.0

I I I I I I I I
-12 -10 -08 -06 -04 -02 0.0 0.2

Fig. 3. Densities of ary, dl% and dIQN when d = 0.3, N =500 and w = 0.
N

In the case of long-memory process, the empirical density plots are given in
Figs. 3 and 4 for non-contaminated and contaminated time series, respectively.
Similar conclusions of the AR case are drawn. That is, in the uncontaminated
scenarios, all three methods displayed similar densities although the method M
and the classical one (periodogram) are very close. In the contaminated case,
the classical one is totally affected by the additive outliers. Reinforcing that the
ACF using @ does not have the positiveness property.
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Q]
oY

>

=

= -

5

o <
~
Q]
o

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

Fig. 4. Densities of a7, Qm and & oy whend = 0.3, N =500, § = 0.01 and w = 10.
N

4 Applications of M and Qy-periodograms

4.1 Robust Estimation of the Fractional Parameter

Based on the theoretical results discussed previously, this section introduces some
applications related to the use of M-regression and @ estimation functions. The
application is divided in two cases: (a) Estimation of the fractional parameter
d in long-memory processes; (b) Estimation in periodic AR (PAR) processes.
Some finite sample size investigation is also addressed in the context of time
series with and without outliers.

(a) Estimation of the fractional parameter in long-memory process

The estimation methods of the fractional parameter d discussed here are
derived from the well-known semi-parametric regression method (GPH) origi-
nally proposed by Geweke and Porter- Hudak (1983). The regression estimation
methods based on I and I]C\?[N were previously introduced in Reisen et al. (2017)
and Fajardo et al. (2009), respectively, papers where the reader will find more
details related to theoretical and empirical results of these estimation method-
ologies.

(A10) (g;)i>1 is a stationary mean-zero Gaussian process with spectral den-
sity given in Assumption (AT).

For estimating the fractional parameter d of long-memory processes hav-
ing their spectral density satisfying (14), it is usual to use the standard GPH
(Geweke and Porter-Hudak 1983) estimator defined in the following. This esti-
mator is motivated heuristically by starting from
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log(f(A;)) = —2dlog(|2sin(X;/2)]) + log(f*(A;)) = —2dX; + log(f*(};))
= log(fg) — 2dX; +1og(f7/15), (37)

where X; = log[2sin(};/2)[ and f; = f*(A;). If

Ef = log (I]Jy((/\)v))> , (38)

then
log(In(A;)) = &ff +1log(f(A;))
and, by (37),
log(In(Aj)) = log(f5) — 2dX; +log(fF/f5) + e} - (39)
The GPH estimator is given by

JOPH _ —0.5 Z;nle(XJ - X) IOg(IJI\‘fS()‘j))
oy (X — X)? ’

(40)

where X; = log|2sin();/2)|, X = SN X /mu, IX8()\;) is defined in (9) and
my is a function of N.

Based on the above discussion, one way to define a M-regression estimator
of d consists in replacing I%° in (40) by I¥ defined in (13):

QM —0.5 370 (X5 — X) log(I (A)))
oy (X, — X)? 7

(41)

where X; = log|2sin();/2)], X = Y7 X;/my and my is a function of N
which is specified in Theorem 5.

The theoretical properties of dM are established under the following assump-
tions. The random process (¢;) is obtained through a moving average process:

g =D aj kG, a;=L(j)j 2 =1, (42)

k<j

for some D in (0,1), where L(-) is a positive slowly varying function at infinity
and where the random variables (; are i.i.d. with zero mean and variance 1. It
is assumed that the distribution of (j satisfies

|E(e™)| < C(1+|u))™°, ueR. (43)

where C' < oo and § > 0 are constants. Note that, Conditions (42) and (43)
imply that the cumulative distribution function F;, of ¢ is infinitely boundedly
differentiable, see Koul and Surgailis (2000).
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Theorem 5. Let Y; = ¢;, for all i in {1,...,N}, where &; satisfy (42) and
(A10). Assume that 1/D is not an integer and that 3 = 0 in (2). Assume
moreover that E((EV?F") < oo, where k* = [1/D)], (o is defined in (42) and
satisfies (43), v1 # 0, vo =0 and vs # 0, where the vy are defined by

Ve = / Y(y) [1- (—l)k} F®(y)dy, for all integer k >0, (44)
0
where ¥ is the Huber function. Then, if 1/3 < D < 1,
Vmn (@M = d) -5 N(0,72/24), as N — oo, (45)

where dM is defined in (41) and my = NP with 0 < § < (1 — D)/3.

This result is proved in Reisen et al. (2017).
Another way of defining a robust estimator of d is to consider:

05N (X — X) log (IR (M)

JQN — - ,
pe (X — X)?

(46)

where X; = log [2sin(\;/2)], X = Z;n:]vl X;/mn, IJ%N (A;) is defined in (28) and
my is a function of N. For further information, see Fajardo et al. (2009). The
asymptotic property of d9v is still an open problem, however, the empirical
results given in Fajardo et al. (2009) support the use of this method under time
series with and without outliers. The performance of fractional estimators dGPH ,
dM and d9~ is the motivation of the next subsection for long-memory time series
with and without additive outliers.

4.1.1 Finite Sample Size Investigation
In this subsection, the numerical experiments were carried out in accordance
with the model of Sect.3. For the simulations, N = 500, w = 10 and § = 0.01
for 5000 replications. The results are displayed in Figs.5, 6 and Table 1. Since
there is not short-memory component in the model my was fixed at N7 for all
tree methods.

Figure5 presents the boxplots with the results of CZG PH, dy and JQ ~ esti-
mators for the uncontaminated scenario. d » and JQ ~ Seem to present positive

Table 1. Empirical Mean, Bias and RMSE of chpH, a?M and JQN when w = 10 and
6 =0,0.01,0.05.

d |d MEAN BIAS RMSE

depn |du CZQN depr |du CZQN depw |du dox
0.3/0.0 [0.3029/0.2950/0.2933| 0.0029 | —0.0049|—0.00660.0601|0.0596|0.0558
0.01/0.2226|0.2899 0.3052|—0.0773| —0.0101| 0.0052/0.0972|0.0581|0.0584
0.05/0.1225/0.26810.3236 | —0.1775| —0.0318| 0.02360.1873|0.0689 | 0.0682
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Fig. 5. Boxplots of JGPH, Ci]w and LiQN when § = 0.
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Fig. 6. Boxplots of JGPH, dy and ciQN when 6 = 0.05 and é = 0.1, respectively.

bias and, surprisingly, db ~ displays smaller deviation. However, in general, all
methods perform similarly, i.e., all estimation methods leaded to comparable
estimates close to the real values of d.

Figure 6 displays the boxplots of JGPH, dy and dQN when the series has
outliers. As can be perceived from the boxplots, the GPH estimator is clearly
affected by additive outliers while the robust ones keep almost the same picture
as the one of the non-contaminated scenario, except that the bias of cfQ ~ becomes
negative, that is, this estimator tends to overestimate the true parameter.
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The empirical mean, bias and mean square root are displayed in Table 1. This
numerically corroborates the results discussed based on Figs.5, 6, that is, the
estimators have similar performance in the absence of outliers in the data. While
the performance of darn changes dramatically in the presence of outliers, the
estimates from db ~ and dy keep almost unchangeable. As a general conclusion,
the empirical result suggests that all the methods can be used to estimate the
parameter d when there is not a suspicion of additive or abrupt observation.
However, in the existence of a single atypical observation, the methods JQ ~ and
dys should be preferred. Similar conclusions are given in Fajardo et al. (2009)
and Reisen et al. (2017) for JQN and dyy, respectively.

4.2 @, and M-estimators in PARMA Models

One of the most popular periodic causal process is the PARMA model which
generalizes the ARMA model. {Z; };¢7 is said to be a PARMA model if it satisfies
the difference equation

?;0 ¢l/,jZ’l“S+l/7j = ZZV:O 01/,]667“54»117]67 re’Z (47)

where for each season v ( 1 < v < §) where § is the period, p, and ¢, are the
AR and MA orders, respectively, ¢, 1,...,0u,p, and 0,1,...,0,,, are the AR
and MA coefficients, respectively, and ¢, 0 = 6,0 = 1. The sequence {e;}iez
is zero-mean and uncorrelated, and has periodic variances with period S, i.e.
E(533+y) =02 for v = 1,...,8. In the following, p = max, p,, ¢ = max, q,,
¢v; =0for j > p,, 0, =0fork > g, and (47) is referred as the PARMA(p, ¢)s
model (see, for example, Basawa and Lund 2001 and Sarnaglia et al. 2015).

To deal with outliers effect in the estimation of PAR model, Sarnaglia et al.
(2010) proposed the use of the @ (.) function in this model. Following the same
lines of the linear time series model described previously, the Qx(.) function is
used to compute an estimator of the periodic autocovariance function v*)(h) at

lag h and this sample ACF based on @Qn(.) estimator, denoted here as fyg )(h),

replaces the classical periodic ACF ~®*) (h) in the Yule-Walker periodic equations
(see, for example, McLeod 1994 and Sarnaglia et al. 2010) to derive an alternative
parameter estimator method for a periodic AR model. The authors derived some
asymptotic and empirical properties of the proposed estimator. They showed
that the method well accommodate the effect of additive outliers, that is, it
presented robustness against these type of observations in the finite sample size
series as well as in a real data set.

Let now Zy,...Zn, where N = nS, be a sample from PAR process which is
a particular case of the model definition in (47) with ¢, = 0 and let now Qn/(.)
for PAR process be defined as

QY (2) = Qn({Zrs 1o }o<ren)- (48)

Based on Q%)(Z ), the authors derived the sample ACF for periodic station-

()

ary processes 4., (h). Under some model assumptions, they proved the following

main results.
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1. For a fixed lag h, *Ayg )(h) satisfies the following central limit theorem: As
N — o0,

VN (380 =) 2 N (0, 53),

where v(*)(h) is the periodic ACF function and &7 is the variance, more
details are given in Sarnaglia et al. (2010).

2. The Qg\’;) Yule-Walker estimators (q;,,,i)lgigpw,,:lw’s satisfy q;,,,i — ¢y =
Op(N~1/2)foralli=1,...,p, and v in {1,...,S}.

Recently, Solci et al. (2018) compared the Yule-Walker estimator (YWE), the
robust least squares estimator (Shao 2008) and the ACF @Q,, estimator (”yg )(h),
denoted here RYWE, in the context of estimating the parameters in PAR models
with and without outliers. Their main conclusion is similar to the cases discussed
previously, that is, for the case of ARFIMA model '?yg )(h) displayed good per-
formance in estimating the parameters in PAR models, periodic samples with
and without outliers. As expected, the YWE estimator performed very poorly
with the presence of outliers in the data. One of their simulation results is repro-
duced in the table below (Table2) in which n = 100,400 (cycles), S =4, €; is a
Gaussian white noise process and 6 = 0.01 (outlier’s probability) and magnitude
w = 10. The results correspond to the mean of 5000 replications.

Table 2. Bias and RMSE for Model 1 and outliers with probability 6 = 0.01.

w | € n | ¢ua YWE RYWE

Bias RMSE | Bias RMSE
0 N(O,l) 100/0.9 | —0.007 | 0.077 | —0.003|0.103
0.8 | —0.002|0.065 0.004 | 0.084
0.7 0.000 | 0.063 | —0.001 | 0.083
0.6 | —0.005|0.066 | —0.003 | 0.083
400/0.9 | —0.001|0.037 | —0.001|0.047
0.8 | —0.001|0.031 0.000 | 0.038
0.7 | —0.001|0.032 0.001 | 0.038
0.6 0.000 | 0.032 0.000 | 0.039
7 |N(0,1)100/0.9 | —0.1810.247 0.014 | 0.120
0.8 | —0.118|0.176 0.012 | 0.096
0.7 | —0.105|0.157 0.015 ] 0.091
0.6 | —0.097|0.151 0.012 | 0.091
400/0.9 | —0.183]0.203 0.017 | 0.055
0.8 | —0.129|0.144 0.012 0.046
0.7 | —0.108 | 0.124 0.013|0.044
0.6 | —0.103|0.119 0.014 | 0.043
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As an alternative estimator of ém-, Sarnaglia et al. (2016) proposed the use
of M-periodogram function to obtain estimates of the parameters in PARMA
models. The estimator is based on the approximated Whittle function sug-
gested in Sarnaglia et al. (2015). Basically, the Whittle M-estimator of PARMA
parameters is derived by the ordinary Fourier transform with the non-linear
M -regression estimator for periodic processes in the harmonic regression equa-
tion that leads to the classical periodogram. The empirical simulation investiga-
tion in Sarnaglia et al. (2016) considered the scenarios of periodic time series with
presence and absence of additive outliers. Their small sample size investigation
leaded to a very promising estimation method under the context of modelling
periodic time series with additive outliers and heavy-tailed distributions. The
theoretical justification of the proposed estimator is still an open problem and
it is now a current research theme of the authors.

Table 3 displays results of a simple simulation example to show the empirical
performance of the Whittle M-estimator with the Huber function ¢ (x) (Huber
1964) compared to the maximum Gaussian and Whittle likelihood estimators to
estimate a PAR(2) model with parameters ¢11 = —0.2, ¢2 17 = —0.5, 0’%)1 =1.0
and 0571 = 1.0. The sample sizes are N = nS = 300, 800 (n = 150, 400,
respectively) and the Huber function was used with constant equal to 1.345,
which ensure that the M-estimator is 95% as efficient as the least squares esti-
mator for univariate multiple linear models with independent and identically
distributed Gaussian white noise. The sample root mean square error (RMSE)
was computed over 5000 replications. The PAR(2) model with additive outliers
was generated with outlier’s probability § = 0.01 and magnitude w = 10. The
values with “x” refer to the RMSE for the contaminated series.

Table 3. Empirical RMSE results for estimating an PAR/(2) model.

Method | N | ¢1.1 ot b2 031

MLE | 300 0.067; 0.121* | 0.117; 1.366" | 0.079; 0.252* | 0.111; 1.363"
800 | 0.048; 0.101* | 0.079; 1.122* | 0.046; 0.239* | 0.074; 1.253"

WLE 300 0.068; 0.121* | 0.117; 1.368" | 0.079; 0.252* | 0.111; 1.364"
800 | 0.048; 0.101* | 0.079; 1.122* | 0.046; 0.239" | 0.074; 1.253"

RWLE | 300 | 0.067; 0.067" | 0.147; 0.179* | 0.083; 0.089" | 0.147; 0.189"
800 | 0.051; 0.054* | 0.118; 0.149* | 0.051; 0.058" | 0.108; 0.152"

In the absence of outliers, in general, all estimators present similar behaviour.
Relating to the estimation of the variance of the innovations, the MLE and
WLE seem to be more precise which is an expected result since the data is
Gaussian with zero-mean and these two methods are asymptotically equivalents.
The RMSE of the estimators decreases as the sample size increases. When the
simulated data has outliers, as an expected result the MLE and WLE estimates
are totally corrupted by the atypical observations while the RWLE estimator
presents generally accurate estimates. This simple example of simulation leads
to the same conclusions of the models discussed previously in which M-regression
method was also considered.
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The methods discussed above give strong motivation to use the methodology
in practical situations in which periodically correlated time series contain additive
outliers. For example, Sarnaglia et al. (2010) applied the robust ACF estimator
'”yg ) (h) to fit amodel for the quarterly Fraser River data. Sarnaglia et al. (2016) and
Solci et al. (2018) analysed air pollution variables using the robust methodologies
discussed in these papers. In the first paper, the authors considered the daily aver-
age SO, concentrations and, in the second one, it was analysed the daily average
PMq concentrations. Both data set were collected at Automatic Air Quality Mon-
itoring Network (RAMQAT) in the Great Vitéria Region GVR-ES, Brazil, which
is composed by nine monitoring stations placed in strategic locations and accounts
for the measuring of several atmospheric pollutants and meteorological variables
in the area. In general, the models well fitted the series and all these applied exam-
ples revealed outliers effects on the estimates.

5 Proof of Theorem 1

By Propositions 1 and 4 and Example 1 of Wu (2007) the assumptions of The-
orem 1 of Wu (2007) hold. Thus,

gmc) ~Fe)BNOy) LN (0,40), N — oo,
with
=Y E{y(co)v(er)}Ay
keZ
where
2 " X
A = Jim — 3 (Zi&x?) (cos((€£+ Kk)A;) sin((£ +E)N;)) .
=1 J

Observe that

G _
Ay *ngnooﬁ Z —sin(kkj)—&-szin((%-l-k))\j) Cos(k)\j)—cozs((QZ-‘rk)Aj)

—|k ‘ Y s _
[ cos(kXj) sin(k);) i g NZIH Cos((%;kﬂ]) bm((%;k))\y)
= \—sin(kA;) cos(kA,;) +jm o Z sin((%;k)xj) —cos((22€+k)>\j) :

N-— |k|< cos(kX;)+cos((264+k)A;) sin(k)\j)+sin((2€+k:)/\j)>

N—ooco N
(=1

By observing that

1 NIkl cos(kXj) NIkl sin(kXj) NIkl .

~ pzzl cos((2¢ + k)XA;) = — [:21 cos(28X;) + —~ Igl sin(24X;)

_ cos(kXj) o ) B B sin(A; (N — |kl[)) sin(kX;) sin(s B B sin(\; (N — |kl]))
=~ s(Aj (N — [k] — 1)) sin(ng) t—N (A5 (N — |k 1>>7sin()\j)

tends to zero as N tends to infinity and that the same holds for
-1 ZN Ikl sin(2¢ 4 k), this concludes the proof.
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