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Abstract

Air quality monitoring stations are essentials for monitoring air pollutants and, therefore, are essential to protect the public
health and the environment from the adverse effects of air pollution. Two or more stations may monitor the same pollutant
behavior. In this scenario, the equipment must be reallocated to provide a better use of public resources and to enlarge
the monitored area. The identification of redundant stations can be carried out by the application of principal component
analysis (PCA) as a grouping technique. The principal component analysis is a set of linear combinations of the original
variables constructed to explain the variance—covariance structure of the data. It is well known that outliers affect the
covariance structure of the variables. Since the components are computed by using the covariance or the correlation matrix,
the outliers also affect the properties of the components. This article proposes a grouping methodology that applies robust
PCA to identify air quality monitoring stations that present similar behavior for any pollutant or meteorological measure.
To illustrate the usefulness of the proposed methodology, the robust PCA is applied to the management of the automatic
air quality monitoring network of the Greater Vitéria Region in Brazil that consists of 8 stations. It was found that four
components could explain 84% of the total variability, and it is possible to create a group composed of at least two stations
in each one of the components. Therefore, the redundant stations can be installed in a new site to expand the monitored area.
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1 Introduction cardiovascular problems for short- and long-term exposure

at high concentrations [1, 3, 10, 24].

The concern about air pollution problems has increased The primary purpose of air quality management is to

considerably in the last 50 years. Especially in developing
countries, the air quality has been degraded as a result
of industrialization, population growth, high rates of
urbanization, and inadequate or nonexistent policies to
control air pollution. The problems caused by air pollution
produce local, regional, and global impacts. In this context,
the particulate matter (PM), especially the PMg, which has
an aerodynamic diameter less than 10 pum, is one of the
most important pollutants with natural and anthropogenic
sources. Its adverse impacts on humans health may lead
to an increment of mortality rates, and respiratory and
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protect public health and the environment from the adverse
effects of air pollution. Adequate control of air quality
involves several activities such as risk management, setting
standards for emissions and air quality, implementation
of control measures, and risk communication [27]. The
monitoring of air quality is essential for any air pollution
control policy. The realization of efficient management
of air quality is important for identifying and quantifying
the pollutants found in a region and their sources. This
is accomplished by using stations to monitor different
pollutants according to the needs of the regions where the
stations are installed.

In Brazil, although the limits for pollutant concentrations
are established by the federal legislation CONAMA 003/90
[4], this decree does not contemplate guidelines on how
to construct or how to manage monitoring networks and,
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thus, entrusting this task to each one of the 27 federative
units. In this scenario, an actual overview of Brazil’s air
quality monitoring networks is given in a recent publication
of the Instituto de Energia e Meio Ambiente coauthored by
the Brazilian Ministry of the Environment. This publication
highlights although essential the air quality monitoring in
Brazil is far from being a reality. Due to the dimensions
of the country, the non-prioritization of air quality policies,
and the amount of financial resources destined to the
monitoring activities, only 12 out of 27 unity members have
an operational air quality monitoring network [12].

The installation and continuous operation of an air
quality monitoring station is cost-intensive as it requires
finding a suitable place for the installation and personnel
for its maintenance. Only one monitoring station should
operate in an area characterized by a specific pattern of air
pollution. In [19], it is indicated that the number of stations
that constitute a monitoring network must be optimized to
reduce costs and expenses. If there are stations with similar
patterns of pollution for a specific pollutant, the monitoring
equipment could be properly relocated to another area of
interest.

In this context, the principal component analysis has been
successfully used in air pollution for managing a network
of monitoring stations in several studies, for instance, [28]
studied PCA with time series models in many different
applications related to air pollution data, [29] applied PCA
to verify redundant air quality monitoring networks in
Shanghai (China). [7] used PCA and cluster analysis (CA)
to check the pattern of behavior of the pollutants carbon
monoxide (CO), ozone (O3), particulate matter of diameter
< 10pum (PMjg), sulfur dioxide (SO;), nitric oxide (NO),
and nitrogen dioxide (NO;) in five different stations
in Malaysia. In [19-21], PCA was applied to identify
monitoring sites with similar concentrations of pollutants
for PMjp, SOy, CO, NO,, and O3 in the metropolitan
area of Porto (Portugal). In [15], PCA was employed to
study the air quality monitoring network of Hong Kong
for the pollutants of SO, NO,, and respirable suspended
particulate (RSP). The authors found that the monitoring
stations located in nearby areas are characterized by the
same specific air pollution characteristics and suggested
that redundant equipment should be transferred to other
monitoring stations allowing for further enlargement of the
monitored area. Other studies include [14] and [9].

The application of PCA is not exclusive to the
management of air quality monitoring networks. Recently,
[26] used PCA and nonlinear PCA to assess the redundancy
of the parameters and monitoring locations of the Piabanha
water quality network in Brazil. In [18], PCA and other
multivariate statistical tools were applied to assess the river
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surface water quality and also redundant monitoring stations
in Can Tho City (Vietnam).

At this point, PCA is one of the main multivariate
statistical techniques. The goal of PCA is to explain the
covariance structure of the data through auxiliary variables
called components. These components are constructed
from linear combinations of the original variables and are
uncorrelated. Briefly, PCA calculates the eigenvalues and
eigenvectors of the covariance or correlation matrix. The
main application of PCA is to reduce the dimensionality of
a correlated data matrix of n dimension to a m dimension,
where m < n. The reduction is performed so that the new
set of variables captures most of the variability contained
in the original data. A review of the fundamentals of PCA
using R [22] can be found in [25].

Besides the use for dimensionality reduction, the PCA
technique can be used for the clustering of the variables of a
data matrix. In [2], the clustering of variables was discussed
considering the eigenvectors of the PCA. The grouping of
variables consists of choosing variables that have similar
values for its eigenvectors in absolute value and are highly
correlated to the principal component.

In the air pollution context, outliers may arise from
different scenarios such as human-made disasters and nat-
ural catastrophes, measurement errors due to the failure of
equipment or a sudden change in the atmosphere conditions,
and human errors. Another critical situation arises when the
observed pollutant is under the concentration limits estab-
lished by legislation standards, but it may be considered an
atypical observation during the statistical analysis.

Furthermore, PCA is sensitive to outliers since the
estimation of the mean vector, the covariance matrix, and
the correlation matrix are directly influenced by outliers.
As a consequence, the estimation of the eigenvalues and
eigenvectors of the covariance or correlation matrix will be
influenced by outliers present in the data (see, e.g., [8]).
It is worthwhile to mention that even a single outlier may
affect classical statistics methods. In [6], it is indicated that
conclusions obtained from principal component analysis
calculated from a dataset with outliers may be misleading.

Under these circumstances, the common choice made
by a wide range of scientists and practitioners to mitigate
this problem is to delete the observations suspected to be
outliers. As pointed out by [17, Chapter 1], the removal of
an outlier observation may lead to many issues since the
deletion is based on a subjective decision. A viable option to
attenuate these problems is to use robust statistical methods
since these methods still work well even when the presence
of outliers is uncertain. Among the methods for robust
estimation of the covariance or correlation matrix with
time-independent datasets, there is the estimator proposed
by [16]. This estimator uses the so-called Q,(.) estimator
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proposed by [23], which is independent of the location
parameter of the dataset.

In this paper, the central idea is to robustify the estimation
of the covariance matrix before calculating its eigenvalues
and eigenvectors in PCA. The methodology proposed
consists of the application of robust principal component
analysis and selecting the stations which presented higher
correlations to the selected PCs. Then, a decision rule is
to be applied to decide to keep the redundant station in
the same place or to move it to a new area. This proposed
methodology is also adequate when outliers are presented
in the dataset. The PM( data of the metropolitan area of
the Greater Vitdria Region (GVR), Brazil, is analyzed as an
illustrative example.

The paper is structured as follows: Section 2 describes
the data and the statistical model introducing the proposed
estimation method and how to identify monitoring stations
that present similar behavior; Section 3 presents the data
analysis and its discussion comparing robust PCA with
the standard one. Finally, Section 4 presents the closing
remarks.

2 Data and Methods
2.1 Sampling Stations in the Greater Vitoria Region

The Greater Vitéria Region is located on the southeast
coast of Brazil (latitude 20°19 S, longitude 40°20 W)
with a population of approximately 1,900,000 inhabitants.
The climate is tropical humid, with average temperatures
ranging from 24 to 30 °C. The region has many ports,
being an important cargo transport hub in Brazil. Also, there
are many industries presented in the region, such as steel
plants, iron ore pellet mill, stone quarrying, cement and food
industry, and asphalt plant.

The automatic air pollution monitoring network
(AAQMN) of GVR is consisted of eight monitoring sta-
tions distributed in the cities of this region as follows: two
stations in Serra (Laranjeiras and Carapina), three stations
in Vitoria (Jardim Camburi, Enseada do Sua and Vitéria
Centro), two stations in Vila Velha (Vila Velha Centro and
Ibes), and one station in Cariacica (at the regional food
distribution center, CEASA). The PMyg, in ug/ m?3, is mon-
itored in all stations. Figure 1 presents the geographical
location of each station. The PM ¢ series corresponds to the
daily average (over a 24-h period) observed at all stations
from January 2005 to December 2009.

2.2 Principal Component Analysis

Most of the practitioners employ the standard PCA,
which is based on the sample covariance matrix and is

summarized in the sequel. Let X1, ..., X, be a sample
of size n of an independent and identically distributed
multivariate distribution with dimension p, mean vector pu,
and covariance matrix X. The method of moment estimator
(MME) of ¥ is:

. 1 &
By=-) Xi- X — ), e
i=1

where fi = % Y7, Xi. As stated by [13], the big drawback
of PCA tool based on covariance matrices is the sensitivity
of the PCs to the units of measurement of the variables.
Therefore, if large differences in the variances of variables
are found, the variables with large variances will tend to
dominate the first PCs. To avoid this problem, the use of
PCA based on the correlation matrix is suggested. To this
end, the sample correlation matrix P can be obtained as
P = DX,D, where D = diag(1/y/G11,...,1/\/G pp),
where 6;;, fori = 1,..., p, is the sample covariance. It is
straightforward to see that even one outlier will affect the
sample mean, and thus the whole covariance (or correlation

matrix).
Now, consider the random vector X’ =
[X1, X2,...,X,] with sample covariance matrix X,

and its associated sample eigenvalues A; > Ap >

. > Ap = 0 with corresponding normed eigenvectors

a'=l[ay, a, ..., a4, Let:
Y =a)X. )
Then, we have:

Var(¥;) = ] ,a; = hi, i=1,2,...,p, 3)
Cov(¥i, V) =a/ 2,0, =0, i#kik=12,..., .. @

If some A; are equal, the choice of the corresponding
eigenvectors d; is not unique.
Associated with Eq. 2, it can be shown that:

P P
Y Var(Xp)=ia+ia+- i, =) Var(¥). (5
i=1 i=1

Equation 5 states that the whole variability of X is retained
by the principal components Y. Therefore, if the main goal
of the use of PCA is to reduce the number of variables, the
scientist may choose to retain only part of the total original
variability.

2.2.1 Robust PCA

Outliers affect the estimation of the location (mean) and
the scale (variance) of random variables. To address this
problem, [23] proposed a robust estimator, Q,, for the
dispersion of a dataset. Let X1, ..., X,, be n i.i.d. copies of
arandom variable X, the estimator Q,, is the kth order:

On(x) =d{IX; — X;l;i < jlw, (6)
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Fig. 1 Geographical location of the stations

where i, j = 1,...,n, and d is a value for consistency
of the estimator. The kth-order statistic is the integer value
k= L) +2)/4] + L.

It is known that for any univariate second-order random
variables X and Y it is possible to compute the covariance
between them as follows:

ap
Cov(X,Y) = T(Var(X/oz +Y/B)—Var(X/a—Y/B)),

(N

for any o, B € R (see, [11]). In order to robustify Eq. 7,
[16] proposed to use the estimator Q,, instead of the sample
variance obtaining:

. af[ L (X Y (X Y
X, Y)=— e —— =11, @8
o ="l +3)-a(3-7)] ®
where @« = Q,(X) and 8 = Q,(Y).
The correlation between the univariate second-order
random variables X and Y can be estimated by:

it +1)-i(: )
G(Eh)ra(-])

p0,(X.Y) = ©))
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where X, Y, «, and § are defined in Eq. 8.

Let X be a random vector of p > 2 variables. The robust
sample covariance and correlation matrix of the random
vector X, namely, b 0, and f’Qn, respectively, are obtained
by estimating every covariance or correlation pairs between
X;and X;,i,j = 1,..., p. In this work, the robustified
principal component analysis is achieved by replacing the
sAtandard covariance (or correlation matrix) with b o, and
Py,

It is worthwhile to mention that the robust estimation
procedure discussed above will provide similar results to the
ones estimated using the standard sample estimator when
there are no outliers presented in the dataset. Therefore, its
usage is recommended.

2.2.2 PCA Clustering and Station Selection

PCA technique can also be used for clustering of the
variables. A method for clustering variables using PCA
is discussed in [2]. The grouping of variables consists
of choosing variables that have similar values for its
eigenvectors in module and are highly correlated to the
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principal component. The correlation between a retained PC
group and the related full PC (containing all the variability
of Y;) is given by:

N 2172 0k &1 A
7 = xj/ @ %, a2, (10)

where A j is eigenvalue of jth component, &l; is the clustered

N .. . &1 .
vector of a; containing k variables, and X,  is the sub-

matrix of ¥ n» Whose lines and columns correspond to the k
grouped variables.

The main idea behind the method is to address
monitoring stations which present similar behaviors for
the PMjy pollutant (the technique is easily expanded to
any other pollutant or meteorological parameter). Thus, a
decision rule can be applied to decide to keep the redundant
station in the same place or to move it to a new area.

As a possible decision rule, [21] suggested three
criteria: (i) sites should be monitoring the highest possible
pollutant concentrations; (ii) the number of pollutants being
monitored at each site should be maximized; and (iii) the
distribution should maximize distances between locations.

In this context, the following methodology for addressing
monitoring stations which present similar behavior for a
given pollutant is proposed:

1. Perform a descriptive statistical analysis of the data to
verify the occurrence of possible outliers and to check
for different scales of the measured variables;

2. Compute the robust PCA using the covariance or the
correlation matrix;

3. Select a desirable number of PCs to be retained, e.g.,
80% or more of the total variability;

4. Arbitrarily choose a cutoff point for the absolute values
of the eigenvectors;

5. Create a group of variables whose coefficient of
eigenvectors is equal or greater than the cutoff point in
the component;

6. Using Eq. 10, compute the correlation between the
selected variables in the PC and the full component.
If the chosen variables and the component are not
correlated, verify the cutoff point and redo steps 4-6;

Table 1 Descriptive statistics of PM o data

7. Apply the decision criteria of [21] to decide to keep or
to move to a new area the monitoring equipment of the
pollutant considered in the study.

3 Data Analysis and Discussion

In this study, the robust PCA was applied as a classification
tool to group monitoring sites with redundant measurements
of PMjo concentrations from January 1st of 2005 to
December 31, 2009 (n = 1826). All the plots and analysis
were performed using the computing environment R. b o
and PQn are available in the package tsqn [5]. The dataset
and the R codes are available upon request.

Table 1 shows the descriptive statistics (i.e., the averages,
standard deviations, and quantile values, among others)
of the variables considered. The concentrations of PMj
pollutants exceeded hourly and annually, the guidelines
suggested by the World Health Organization [27]. It is
observed a high range for all stations.

The boxplot of the data and the series of PMj( are
shown in Figs. 2 and 3, respectively. From the boxplot and
the plots of the series, one can observe higher levels of
PM; pollutant compared with WHO’s guidelines, where
the established limit is 50 pug/m? for 24-h concentrations.
Although the high levels of PM are essential information
that should be considered in the context of the air pollution
and its impact on human health, these observations can
be identified, from a statistical point of view, as being
outliers. Therefore, the high levels of PMy presented in
the series justify the use and comparison of the robust
PCA.

Tables 2 and 3 show the correlations and the robust
correlations (as in Section 2.2) between the monitoring
stations in the study. From both tables, we observe strong
correlations between the variables, e.g., 0.78 for Ibes and
Enseada do Sua stations.

The grouping of stations with redundant measurements
for the PMjg pollutant was carried out following the
methodology proposed in Section 2.2.2. That is, stations
having the same contribution in a given component will

Laranjeiras Carapina  Jardim Camburi Enseada do Sua  Vitéria Centro Ibes Vila Velha Centro Cariacica

Mean 32.26 24.13 28.97 28.08 26.01 28.13 2894 44.16
Std. Dev 11.29 7.67 8.01 8.29 7.37 9.20 11.33 13.12
Min. 6.08 5.75 8.67 7.50 5.62 7.00 5.92 8.92

25th perc.  24.50 19.33 23.64 2271 21.46 22.01 21.51 36.14
50th perc.  31.27 23.00 28.33 27.00 25.25 2729 2721 43.33
75th perc.  38.07 27.71 33.46 32.46 29.78 3291 33.92 50.79
Max. 86.46 88.25 78.08 74.58 70.42 88.12 9475 106.30
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Boxplot of PM4y concentrations (p.g/m3)
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Fig.2 Boxplot of PMj( concentrations of the AAQMN of the GVR

have similar values for their eigenvectors, and they will also ~ highlighted in bold. For both estimators, four components
be correlated to the component. could explain approximately 85% of the total variability of

In the PCA tool, the estimates of the eigenvalues and their the dataset, leading to a dimension reduction of the data. It
corresponding eigenvectors using P and i)Qn are given in  is observed that PCA computed by using i)Qn preserved a
Table 4 where, for each component, the grouped stations are ~ higher percentage of variability in the components.
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Table2 Correlation matrix (IAJ ) between the stations

Laranjeiras  Carapina  Jardim Camburi  Enseada do Sud  Vitdria Centro  Ibes  Vila Velha Centro  Cariacica
Laranjeiras 1.00
Carapina 0.35 1.00
Jardim Camburi 0.52 0.55 1.00
Enseada do Sua 0.53 0.54 0.53 1.00
Vitéria Centro 0.45 0.63 0.59 0.67 1.00
Ibes 0.58 0.61 0.61 0.72 0.64 1.00
Vila Velha Centro  0.38 0.49 0.44 0.46 0.61 0.46 1.00
Cariacica 0.42 0.70 0.56 0.54 0.71 0.69 046 1.00
Table 3 Robust correlation matrix (i’ 0,) between the stations

Laranjeiras  Carapina  Jardim Camburi Enseadado Sua  Vitéria Centro  Ibes  Vila Velha Centro  Cariacica
Laranjeiras 1.00
Carapina 0.40 1.00
Jardim Camburi 0.59 0.57 1.00
Enseada do Sua 0.59 0.58 0.59 1.00
Vitéria Centro 0.45 0.65 0.61 0.71 1.00
Ibes 0.66 0.61 0.62 0.78 0.66 1.00
Vila Velha Centro  0.44 0.55 0.48 0.54 0.60 0.56 1.00
Cariacica 0.46 0.70 0.55 0.60 0.73 0.69 0.51 1.00
Table 4 PCA results for PMy of AAQMN of the GVR
Stations PCA- P PCA - IA’Q,,

1 2 3 4 1 2 3 4

Laranjeiras -0.3002 0.7193 -0.1756 0.1460 -0.3123 0.6998 0.0533 0.0683
Carapina -0.3554 -0.4004 0.2628 0.1750 -0.3488 -0.4144 -0.1961 0.2701
Jardim Camburi -0.3472 0.1700 0.0502 0.7019 -0.3446 0.2356 -0.2115 0.7037
Enseada do Sua -0.3632 0.2163 0.0406 -0.6118 -0.3722 0.1519 -0.0045 -0.5144
Vitéria Centro -0.3864 -0.2265 -0.1026 -0.1629 -0.3745 -0.2867 -0.0211 -0.1276
Ibes -0.3869 0.1787 0.2359 -0.2271 -0.3863 0.1902 -0.0881 -0.3395
Vila Velha Centro -0.3055 -0.2942 -0.8391 0.0141 -0.3203 -0.1838 0.8942 0.1475
Cariacica -0.3721 -0.2766 0.3542 0.0507 -0.3625 -0.3283 -0.3259 -0.0962
Eigenvalue 4.8971 0.7744 0.6282 0.4973 5.146 0.7568 0.5334 0.4612
Proportion 61.22 9.68 7.85 6.22 64.25 9.46 6.67 5.77
Cumulative 61.22 70.90 78.75 84.97 64.25 73.71 80.38 86.14
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Fig.4 The daily average of the
PM,( data
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For both PCAs, the cutoff point was selected to be 0.37 in
absolute value, which led to the highest correlation values.
In the standard PCA, this cutoff led to a correlation between
the selected PC groups and the original PCs of 0.96, 0.88,
0.66, and 0.96, for the four PCs, respectively. In the case
of robust PCA, correlations of 0.96, 0.89, 0.66, and 0.95
were found. The values are close in both standard and robust
PCAs.

Thus, for the method of moment estimator for the first
component, it is possible to visualize the existence of a
group of stations formed by Ibes, Vila Velha Centro, and
Cariacica. In the second component, the group is formed
by Laranjeiras and Carapina. For the third component, Vila
Velha Centro forms a group. Finally, the fourth component
is the group formed by Jardim Camburi, and Enseada do
Sua.

For the grouping through robust PCA, in the first
component, Ibes, Enseada do Sua, and Vitéria Centro can
be grouped. For the second component, Laranjeiras and
Cariacica form a group. In the third component, Vila Velha
Centro is the only station in the group. For the fourth
component, the group is formed by Enseada do Sua and
Jardim Camburi. Therefore, the proposed method allocated
groups differently from P. However, based on boxplot
(Fig. 2) and descriptive statistics (Table 1), the grouping
based on iJQn is suggested here.

To visually confirm the grouping results for both
estimators, the daily averages of PM;( for the groups are
shown in Fig. 4. It is seen that the grouping using PQn is
superior since, for the first component, the grouped stations
have similar concentrations.

To end this analysis and continuing with the procedure
of the methodology discussed in Section 2.2.2, the stations
of Vitéria Centro and Enseada do Sud may be selected to
be moved to a new area to enlarge the total monitored area.
It is highlighted that although Cariacica has no important
contribution to the robust cluster, it is the only station
located in Cariacica municipality and, therefore, must be
kept.

4 Conclusions

This article proposed and applied a grouping methodology
to identify monitoring stations that present similar behavior
for a given pollutant. As a case of study, the AAQMN
of GVR (Brazil), which monitors the PMjg pollutant, was
considered in order to enable better management of the local
monitoring network.

The methodology proposed consists of the application
of robust principal component analysis and selecting the
stations which presented higher contributions to the chosen
PCs. Then, a decision rule is to be applied to decide to keep

the redundant station in the same place or to move it to a
new area.

In the case study, it was found the occurrence of possible
outliers observations during the descriptive analysis of the
PMjo data, which justified the comparison between the
robust and standard PCAs. It was found that Ibes, Enseada
do Sud, and Vitéria Centro presented a similar behavior and
thus can be grouped. Also, Jardim Camburi and Enseada do
Sua form another group. Therefore, two stations, Ibes and
Enseada do Sud, are the candidates to be moved to a new
site to enlarge the monitored area.
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