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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

� Particulate matter is an air pollutant 
that causes damage to the health of 
humans. 
� Association between air pollutants and 

annoyance is interest in many studies. 
� The combination of statistical tools is a 

new contribution in this methodology. 
� The relative risk (RR) is computed for all 

methods considered. 
� Even low particles deposition induces 

high levels of nuisance reported in 
Vit�oria.  
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A B S T R A C T   

As well known, Particulate matter (PM) is an air pollutant that causes damage to the health of humans, other 
animals, plants, affects the climate and is a potential cause of annoyance through deposition on various surfaces. 
The perceived annoyance caused by particulate matter is related mainly to the increase of settled dust in urban 
and residential environments. PM can originate from many sources, i.e., paved and unpaved roads, buildings, 
agricultural operations and wind erosion represent the largest contributions beyond the relatively minor 
vehicular and industrial sources emissions. The aim of this paper is to quantify the relationship between 
perceived annoyance and particulate matter concentration and to estimate the relative risk (RR). The data was 
collected in the Metropolitan Region of Vitoria (MRV), Brazil. For this purpose, the variables of interest were 
modelled using vector time series model (VAR), principal component analysis (PCA), and logistic regression 
(LOG). The combination of these techniques resulted in a hybrid model denoted as LOG-PCA-VAR which allows 
to estimate RR by handling multipollutant effects. This study shows that there is a strong association between the 
perceived annoyance and different sizes of PM. The estimates of RR indicate that an increase in air pollutant 
concentrations significantly contributes in increasing the probability of being annoyed.  
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1. Introduction 

Particulate matter, such as dust, dirt, soot, and smoke, are environ
mental stressors that can cause annoyance, disturbance, stress and im
pairs well-being (Colls, 2002; Cox, 2000; Dockery and Pope, 1994; Farfel 
et al., 2005). According to Nordin and Lid�en (2006), perceived annoy
ance can be considered as a community problem even if only a small 
proportion of the population is annoyed on sparse occasions. The World 
Health Organization (WHO, 1946) defines health as a state of complete 
physical, mental and social well-being and not merely the absence of 
disease. 

PM is formed by particles with different composition, form and sizes: 
ultrafine particles (PM0.1) whose effects on human health are still 
poorly studied, fine particles (PM2.5) that are housed in the terminal 
bronchiole, inhalable particles (PM10) that penetrate the respiratory 
system, total suspended particles (TSP) which are represented by all 
particles suspended in the atmosphere (size range from 0.005 μm to 
100 μm), and the sediment particles matter (SPM) that result from the 
sedimentation or deposition of particles previously suspended in the 
atmosphere, with different sizes and origin, that accumulate on the 
surfaces and cause annoyance (Holgate et al., 1999). 

The association between air pollutants and perceived annoyance is 
the subject of interest in several studies. Most of them, have considered 
regression models to quantify this relationship, for example, in the cases 
of odours (Blanes-Vidal et al., 2011), gases Klaeboe et al. (2000); 
Oglesby et al. (2000), and particles (Klaeboe et al., 2003; Rotko et al., 
2002; Jacquemin et al., 2007; Llop et al., 2008; Klaeboe, 2008; 
Amundsen et al., 2008; Nikolopoulou et al., 2011). 

Klaeboe et al. (2000) have considered logistic regression to correlate 
NO2 concentration and degrees of annoyance due to traffic, and they 
have found that people are more likely to be annoyed when they are 
exposed to high air pollution levels. Oglesby et al. (2000) have applied a 
linear regression model to correlate annoyance and concentration levels 
of NO2 and PM10, and they have found significant correlations between 
these variables. Rotko et al. (2002) have compared exposures to PM2.5 
and NO2 concentrations and perceived annoyance using a linear 
regression model, and they have observed a high correlation between 
personal 48h-PM2.5 and 48h-NO2 concentrations exposure and 
perceived annoyance at home. Jacquemin et al. (2007) have applied a 
linear regression, and they have found a strong positive correlation 
between the PM2.5 concentration and perceived annoyance reported by 
people. Amundsen et al. (2008) have quantified exposure–response re
lationships between perceived annoyance and PM10, PM2.5 and NO2 
concentrations, and they have observed a significant correlation be
tween these variables. Nikolopoulou et al. (2011) have used a logistic 
regression model to correlate air quality perception of pedestrians and 
PM1-10 concentration measured on sidewalks close to streets, and they 
have found a positive correlation in this study. 

Note that, the above-mentioned studies have applied simple linear 
regression and logistic regression but have not considered a synergistic 
effect among pollutants and perceived annoyance. As pointed out by 
Vanhatalo et al. (2016), Souza et al. (2018) among others, this analysis 
becomes very restrictive and may lead to biased regression estimates 
because air pollutants covariates are physically and statistically corre
lated phenomena. In addition, to estimate any multiple regression model 
without considering the multi-collinearity, the parameter estimates may 
lead to a spurious model. One way to mitigate the multi-collinearity 
problem is to apply principal component analysis (PCA). However, as 
pointed out by Zamprogno et al. (2019), to use PCA technique the var
iables have to be uncorrelated in time. 

As well known, the air pollutants concentrations are time series and 
they can’t be assumed to be temporally uncorrelated. Thus, it is neces
sary to use the autocorrelation (ACF) and partial autocorrelation (PACF) 
functions of the pollutants to identify the existence of serial correlation, 
and to apply a Vector Autoregressive Model (VAR) as a filter to mitigate 
the temporal correlation in the covariates. 

In this context, this paper proposes a combination of multivariate 
statistical techniques to investigate the joint effect of different sizes of 
particulate matter to the perceived annoyance. Thus, the combination of 
the statistic tools LOG model, PCA and time series analysis can lead to an 
estimate of the relative risk of perceived annoyance by handling mul
tipollutant effects. The relative risk is usually the parameter of interest to 
measure the impact of the covariates, especially the air pollutants on the 
population health (ZOU, 2004). The proposed methodology results in a 
model called LOG-PCA-VAR. To our knowledge, this is the first work 
which uses logistic regression with PCA and multivariate time series 
models to quantify the relationships between particulate matter (PM10, 
TSP and SPM) and perceived annoyance to estimate the relative risk 
(RR), which is the ratio of the probability of an outcome in an exposed 
group to the probability of an outcome in an unexposed group. In the air 
pollution problems, it is usually to measure the impact of atmospheric 
pollutants on the health of the exposed population see, for example, 
(Martin et al., 1987). 

2. Material and methods 

2.1. Metropolitan Region of Vitoria 

The Metropolitan Region of Vitoria (MRV) is located on the east coast 
of Brazil, in the state of Espirito Santo (Fig. 1). MRV is a densely 
populated region, with 1,500,000 inhabitants and it is a highly indus
trialized and expanding urban region with various air pollutants emis
sion sources such as steel, pelletizing, mining, cement industries, 
vehicles, road re-suspension, port and airport operations, and con
struction (Santos et al., 2017). 

In the MRV area, there is an interest to investigate the impact caused 
by PM due to population reports of being constantly annoyed (approx
imately 25% of the complaints to environmental agency in 2008 are 
about air pollution), specially by the amount of dust in surfaces (Souza 
et al., 2014; Melo et al., 2015). Recently, Machado et al. (2018) have 
developed a survey where showed that, in the MRV, more than 90% of 
the respondents have complained about perceived annoyance caused by 
the air pollution and, the most of these complaints were related to the 
amount of dust in their houses. 

2.2. The particulate matter data 

In the MRV area the weather conditions and the air quality are 
monitored via two complementary sets of monitoring network stations: 
automatic air quality monitoring and the manual SPM monitoring. Fig. 1 
shows the map of the urbanized area divided by municipality (Cariacica, 
Serra, Viana, Vila Velha e Vitoria), the main roads, the main industrial 
sources of PM (point red) and the air quality monitoring stations net
works (blue points). They are: (M1) Laranjeiras, (M2) Carapina, (M3) 
Jardim Camburi, (M4) Enseada, (M5) Vit�oria, (M6) Vila Velha, (M7) 
Ibes, (M8) Cariacica. The coverage areas are 1.5 km around of each air 
quality monitoring station. 

The monitoring station networks are managed by the local envi
ronmental agency (IEMA) that measure automatically hourly concen
trations of different pollutants, specifically the PM10 (particulate matter 
less than 10μg/m3) and TSP (total suspend particles). The SPM (sedi
ment particulate matter) are measured monthly only. Therefore, for a 
coherence analysis, the maximum mean of PM10 and TSP concentrations 
were also monthly computed and used in the regression model. 

The datasets used are the flow of monthly average sediment partic
ulate matter (SPM) as well as monthly maximum and average values of 
particulate matter (PM10) and total suspended particle (TSP) from the 
eight air quality monitoring stations measured during 3 years (from July 
11 to July 2014). 
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2.3. The survey 

Measurements of PM and perceived annoyance were performed 
monthly from July 11 to July 2014. Perceived annoyance was collected 
in two steps: face-to-face interview to the first contact with respondent 
and monthly telephone updates (panel survey). The face-to-face in
terviews randomly selected surrounding 1.5 km of each air-quality 
monitoring station (Fig. 1). On the face-to-face interview the respon
dent confirmed in continuing the interviews in the following months 
(panel survey) about perceived annoyance (details in Machado et al., 
2018). 

The monthly panel survey questionnaire only included two questions 
were applied to 220 respondents (over 16 years old) from July 11 to July 
2014. Telephone questions aimed at monitoring the evolution of 
perceived annoyance over time-related to PM in the environment. 

To quantify the perceived annoyance, categorical and numerical 
scales were considered and applied according to the context of the 
question (for example, “Do you feel annoyed by dust during this last 
month?” With the categorical answers option: not annoyed, slightly 
annoyed, moderate annoyed, very annoyed, extremely annoyed and “do not 
know”. And a second question with a numerical scale: “What is the score 
that represents your perceived annoyance last month? from 1 to 10 points 
scales, where 1 is not annoyed and 10 is extremely annoyed.”). These 

questions were formulated based on the following studies Rotko et al. 
(2002), Klaeboe (2008) and Amundsen et al. (2008). 

From these questions, the average levels of perceived annoyance 
reported by all respondents was calculated. The results were dichoto
mized to be used as the dependent variable in the logistic regression 
model discussed in Section 2.4. The cut-off sample score of the perceived 
annoyance was the median 7, i.e., the scores levels of perceived 
annoyance attributed high scores (�7) was codified by 1 while the 
average levels of annoyed reported low scores (<7) was codified as 0. 
Similar approach was used by Rotko et al. (2002), Egondi et al. (2013) 
and Whittle et al. (2015). 

2.4. Statistical techniques 

As previously mentioned, the main objective of this paper is to 
quantify the association between perceived annoyance (response) and 
pollutants (covariates) variables using data observed in the Metropol
itan Region of Vitoria (MRV). The response variable is binary. Therefore, 
the logistic regression becomes the appropriate regression method to 
describe the association among variables. However, for this statistic 
model, some assumptions are required, and, among them, the covariates 
should be independent from each other and independent of time. And, 
the air pollutants do not follow these assumptions. From this matter 

Fig. 1. Metropolitan Region of Vitoria, the main sources, the main roads and the air quality monitoring stations network: (M1) Laranjeiras, (M2) Carapina, (M3) 
Jardim Camburi, (M4) Enseada, (M5) Vitoria, (M6) Vila Velha, (M7) Ibes, (M8) Cariacica. 
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raised one of the main contribution of this papers which is to proposed a 
hybrid logistic regression model (LOG_VAR_PCA) to quantify the asso
ciation between the perceived annoyance and pollutant variables using 
the data set referred in the previous section. 

Since the covariates (air pollutants) are time series, the use of time 
series models can help to understand the dynamic of the data and, 
additionally, to give a more precise statistical support in quantifying and 
discussing the association between particulate matter concentrations 
and perceived effects (Schwartz, 2000; Gouveia et al., 2004). 

Multivariate techniques are also required for the purpose of this 
paper as justified as follows. To analyse the perceived annoyance caused 
by particulate matter a joint analysis of sediment particulate matter 
(SPM), particulate matter (PM10) and total suspended particles (TSP) is 
required. In this context, an analysis of the multivariate data set will be 
performed without simply isolating the effects of a single pollutant. 

Since the covariates are time series and cross-correlated, the data 
requires a prior treatment using principal component analysis, see 
Zamprogno et al. (2019), Souza et al. (2018) Vanhatalo and Kulahci 
(2016) and reference therein. Although the components obtained from 
PCA are not correlated, they can also present autocorrelation, which is 
transferred to the residuals of the fitted model. Thus, in this work, data 
are filtered through a multivariate time series model (the VAR model 
see, for example, Wei (2006)) before applying the PCA technique, as 
suggested by Souza et al. (2018) and Zamprogno et al. (2019). The 
models and techniques are summarized in the next subsections. 

2.4.1. The logistic regression model 
In many practical situations, the response variable in a regression 

model is categorical, for example, when the variable is binary, indicating 
the presence or absence of a characteristic. Therefore, the logistic 
regression model becomes an important statistical tool to measure and 
quantify the relationship between perceived annoyance and a set of 
explanatory variables (particulate matter). 

The logistic regression model and its parameter estimates are sum
marized. For more details see, for example, Abraham and Ledolter 
(2006). 

Let X ¼ ðX1;X2;…;XpÞ
t be a vector containing p explanatory vari

ables. Suppose that the response variable Y is dichotomic (binary), that 
is, Y ¼ 1 or Y ¼ 0 for the outcome to be success or failure, respectively. 
Let the probability of Y to have success or failures, with respect to X, be 
defined as PðY¼ 1jXÞ ¼ πðXÞ and PðY ¼ 0jXÞ ¼ 1 � π(X), respectively. 

For the explanatory vector X, with the parameter vectorβ ¼
ðβ0;…; βpÞ

t, and the response Y, the probability of success is parame
terized as 

PðY ¼ 1Þ¼ πðXÞ¼ eβ0þβ1X1þ…þβpXp

1þ eβ0þβ1X1þ…þβpXp
: (1) 

Since this probability is a logistic function of the vector β ¼
ðβ0;…; βpÞ

t, it can be shown that the logit of the multiple logistic 
regression model is given by 

ln
�

πðXÞ
1 � πðXÞ

�

¼ β0þ β1X1þ…þ βpXp: (2) 

The parameter βi; i ¼ 0;…; p; are unknown and have to be estimated 
based on sample data by the iteratively reweighted least squares 
approach. Let now X1;…;Xn be a sample of observations of the vector of 
covariates X and Y1,…, Yn are the corresponding response variables. It 
can be shown that the vector parameter β can be estimated by 

bβ¼ðP’cWPÞ� 1P’cWZ; (3)  

where the matrix P is the matrix of regressors which has one in the first 
column for the intercept parameter and cW is a diagonal matrix of 
dimension n x n with elements given by bπ ið1 � bπ iÞ; i ¼ 1;…; n; where bπ i 
have to be estimated using the maximum likelihood method based on 

sample data, Z is a n x 1 matrix which elements are 

Zi ¼ ln
�

bπi

1 � bπi

�

þ

�
Yi � bπi

bπið1 � bπiÞ

�

: (4) 

It can be demonstrated that 

dVarðbβÞ¼ ðP’cWPÞ� 1 (5) 

Regarding to Equations (4) and (5) it is possible to identify a problem 
that may occur: the multicollinearity. The exact multicollinearity occurs 
when the matrix of covariates is not a full rank matrix, i.e., when the 
maximal number of linearly independent columns of P is less than the 
number of columns. Hence, the determinant of the matrix ðP’cWPÞ� 1is 
0 and the matrix is not invertible. 

This problem can be seen by writingcW ¼cW
1
2cW

1
2 and L ¼cW

1
2P then 

Var ðbβÞ¼ ðL’LÞ� 1
: (6) 

It can be shown thatrankðLÞ ¼ rankðPÞ, where rank (.) denotes the 
operator which counts the quantity of linear independent lines. There
fore, if P has not full rank or its columns are very close to being linearly 
dependent (highly correlated), this will have an effect onðL’LÞ� 1 matrix, 
thus, affecting the estimated parameters (Lutkepohl, 1991). 

2.4.2. Principal component analysis 
As well known, Principal Component Analysis (PCA) is a multivar

iate statistical technique that aims, in general, to reduce the dimen
sionality of a data matrix space through linear transformations of the 
original variables. 

In this study, the PCA technique is used to circumvent the problem of 
pollutants that are correlated with each other, i.e., the multicollinearity 
phenomenon. In general, the whole variability of a system determined 
by p variables can only be explained using all the p principal compo
nents. However, a large part of this variability can be explained using a 
lower number r of components (r < p) see for example, Johnson and 
Wichern (2007). 

As mentioned before, the use of PCA requires attention regarding the 
covariates that are correlated in time (serial correlation) as it is the case 
of air pollutants. The time correlation of the vector X will lead to PCs 
auto-correlated and cross-correlated in time. As pointed by Souza et al. 
(2018) and Zamprogno et al. (2019), the effect of time correlation in 
atmospheric pollutants strongly influences the estimates of the principal 
components, increasing the total variability of the data and increasing 
the retained variability of the first component. This can be mitigate 
using a multivariate time series to filter the data, as suggested in Souza 
et al. (2018) and Zamprogno et al. (2019). 

In Equation (2), the vector X will be the PCA variables generated 
from the sample covariance matrix of the filtered pollutants using a 
multivariate autoregressive time series model of order 1 (VAR(1)) (see, 
for example, Wei (2006)). 

This is addressed in the Result and discussion Section. More details of 
the use of PCA in regression models can be recently found in Souza et al. 
(2018) Zamprogno et al. (2019), Hu and Tsay (2014) and Roberts and 
Martin (2006). 

2.4.3. Relative risk 
The relative risk (RR) is frequently used in epidemiological studies to 

measure the impact of atmospheric pollutant concentrations on the 
health of the exposed population. The RR can be defined as the associ
ation that an effect (annoyance) can occur following a certain exposure 
to a risk factor, which corresponds to the exposure to particulate matter 
concentration levels in this study. The relative risk is used in data 
analysis with binary outcomes (0 or 1) as in the case of annoyance. 
According to Bishop et al. (2007) the relative risk is the result of dividing 
the probability of the event (being annoyed when exposed – A|B) by the 
probability of the event (being annoyed when not exposed – A|BC), i.e.: 
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RRðA;BÞ¼
PðAjBÞ
PðAjBcÞ

(7) 

According to Baxter et al. (1997), by analogy, the relative risk 
function at level x of the desired pollutant, denoted RR (x), is defined as: 

RRðxÞ¼
EðYjX ¼ xÞ
EðYjX ¼ 0Þ

(8) 

It is the ratio of the expected value of the response variable at level x 
of the independent variable to the expected of the response if the in
dependent variable was 0. 

In this context, for the logistic regression, it can be shown that the RR 
can be estimated by 

cRRðxiÞ � exibβi (9)  

where xi is the interquartile variation (3rd quantile - 1st quantile from 
Table 1) in the ith pollutant concentration and bβ i is represented by: 

bβi ¼ ​
Xr

j¼1

bαijbγj ​ ​ :i¼ 1; 2;…; p (10)  

where bαj ¼ ðbαjiÞ is the j-th estimated eigenvector of the covariates ma
trix (from Table 3); bγ j is the estimated coefficient of the j-th PC calcu

lated in the logistic regression (from Table 4). Through the coefficient bβ i 
it is computed the individual contribution of each pollutant to the 
perceived annoyance see, for example, Souza et al. (2018). 

3. Results and discussion 

Table 1 presents the descriptive statistics (minimum, maximum, 
average and standard deviation) of the pollutants monthly measured in 
the Vitoria region from 2011 to 2014. Note that, the maximum partic
ulate matter concentrations observed for PM10 and TSP pollutants can be 
very dangerous for the health system since its values are above the limits 
set by the World Health Organization (WHO, 2005). The maximum 
value for SPM is also higher than the annoyance standard values 
considered in many countries see, for example, (Vallack and Shillito, 
1998; Machado et al., 2018). 

In the standard regression model, the basic assumption is that the 
covariates are not correlated and not time-dependent. However, in the 
case studied here, the predicable variables do not satisfy these proper
ties, since the pollutant variables are serially and time dependent. As 
shown in Table 2, the pollutants are contemporaneously correlated, for 
example, the sample correlation between SPM x PM10 is bρSPM; PM10

¼

0:424. The pollutants are time series, and their behaviours over time are 
displayed in Figs. 2 to 6. These figures show the monthly data time series 
of each air pollutant (particles deposition rate, monthly averages of 
PM10 and TSP, monthly maximum averages of PM10 and TSP) from July 
2011 to October 2014. These also display the sample autocorrelation 
(ACF) and partial autocorrelation (PACF) functions which clearly show 
that the pollutants are time-dependent. In the ACF and Partial ACF plots 
(Figs. 2-11), the vertical axis measures the strength of the correlation 
and the horizontal axis is the time lag at which the correlation was 
calculated. The dashed lines represent the 95% confidence intervals for 
uncorrelated data. 

The sample ACF measures the dependence between the observations 
of the same time series at different delays, usually detonated as lags in 

time series methods. Figs. 7 to 11 show that the VAR (1) removed the 
time correlations. From these, it appears that the series have a very weak 
yearly seasonality. However, it should be noted that the seasonal yearly 
effect (if any) may be reduced by the smoothing of the monthly mean 
average of the pollutants PM10 and TSP. 

Since the covariates do not meet the regression basic assumption, 
one way to mitigate the problem is to remove the time correlation (se
rial-correlation) of the series. In this context, it is suggested here to use a 
linear time series filter as a procedure to transform the data into a “white 
noise” process. This problem and how to mitigate it are well-addressed 
in the recent publications Souza et al. (2018), Vanhatalo and Kulahci 
(2016), and Zamprogno et al. (2019). 

Based on the sample ACF plots, the residual analysis and the Akaike 
information criterion (AIC), which is an estimator of the relative quality 
of statistical models for a given set of data, a Vector Autoregressive 
Model of order 1, denoted by VAR (1), was chosen to model the vector of 
all pollutants time series (particles deposition rate, monthly averages of 
PM10 and TSP, monthly maximum averages of PM10 and TSP). The 
sample ACF plots of the filtered data are displayed in Figs. 7 to 11. From 

Table 1 
Descriptive statistics of air pollutants (from July 2011 to November 2014).  

Variable Minimum Maximum Mean Std. Dev. 1st quantile 3rd quantile 90th percentile 

SPM (g/m2 30 days) 6.267 13.283 9.097 1.680 7.683 9.969 11.173 
PM10 (μg/m3) 23.002 35.167 28.818 2.962 26.670 31.575 32.590 
TSP (μg/m3) 33.166 61.167 48.665 7.808 42.705 55.899 58.830  

Table 2 
Correlation matrix for the original variables (before time series analysis).  

Variables SPM PM10 

(mean) 
TSP 
(mean) 

PM10 

(maxim) 
TSP 
(maxim) 

SPM 1.     
PM10 

(mean) 
0.424** 1    

TSP (mean) 0.278 0.764** 1   
PM10 

(maxim) 
0.409** 0.681** 0.654** 1  

TSP 
(maxim) 

0.342* 0.701** 0.754** 0.772** 1 

**p-value ¼ 0,01. 
*p-value ¼ 0,05. 

Table 3 
Results of factor loadings statistics and application of PCA.   

PC1 PC2 PC3 PC4 PC5 

Eigenvalue 2.576 1.071 0.681 0.396 0.276 
Variability (%) 51.528 21.426 13.622 7.913 5.510 
Cumulative % 51.528 72.955 86.577 94.490 100.000 

SP (monthly rate) 0.267 0.733a � 0.554 � 0.269 � 0.112 
PM10 (monthly mean) 0.495a � 0.257 � 0.365 0.674 � 0.319 
TSP (monthly mean) 0.400a � 0.583 � 0.318 � 0.607 0.172 
PM10 (monthly maxim) 0.492a 0.104 0.611a � 0.254 � 0.557 
TSP (monthly maxim) 0.531a 0.214 0.293 0.200 0.739  

a High contributions. 

Table 4 
Parameters estimated by the multiple logistic model estimated for the first three 
components.   

bβ  Standard error Exp(bβ)  

PC1 0.053 0.202 1.054 
PC2 0.058 0.309 1.060 
PC3 � 0.245 0.390 0.783 
Intercept 0.204 0.320 –  
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these plots, it can be seem that the time-correlation of the series was 
removed, and the filtered data displays a similar behaviour of a white 
noise process, that is, the correlations of the residuals are nulls. In 
addition, the residuals do not show any anomaly (results are available 
upon request). Therefore, this indicates that the VAR (1) model well- 
fitted the data. For a more details of multivariate linear time series 
models see, for example, Wei (2006). 

Table 3 displays the results of the PCA technique applied to the 
filtered series. The total cumulative variance was used as a criterion for 

choosing the number of components resulted by the PCA. Thus, the first 
three components were chosen, which explain 86% of the total vari
ability. In the PC1, the higher contributions come from TSP, PM10 TSP. 
In the case of PC2, SP gives most of the variability and, for the PC3, PM10 
gives the highest contribution. The pollutants indicated by (*) are the 
ones that give more contributions to the variability of the PC. For more 
details on PCA and its application see, for example, Cadima and Jolliffe 
(1995). 

In the multiple logistic regression model, the response variable 

Fig. 2. Time series (a), autocorrelation function (b) and partial autocorrelation function (c) for SPM from 2011 to 2014.  

Fig. 3. Time series (a), autocorrelation function (b) and partial autocorrelation function (c) for monthly mean concentration of PM10 from 2011 to 2014.  

Fig. 4. Time series, autocorrelation function and partial autocorrelation function for monthly maximum PM10 concentration from 2011 to 2014.  
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(perceived annoyance) was associated with the covariates PC1, PC2 and 
PC3 resulting in the hybrid LOG-PCA-VAR fitted model and its param
eter estimates are in Table 4. 

The relative risk (RR) of annoyance results were expressed by the 
interquartile variation range. The RR analysis was performed for 
different levels of pollutants concentrations to test the null hypotheses 
H0: RR ¼ 1 against H1: RR > 1, using significance level of 5%. Tor each 
pollutant, Table 5 displays the results of the estimates of RR and the 
respectively confidence interval (CI), for the standard and the proposed 

methodology, that is, dRR* refers to the estimated RR using the standard 
logistic regression, and cRR corresponds to RR estimate based on the 
LOG-PCA-VAR model. Note that, the dRR* was considered in the study 
for comparison purpose, that is, to quantify (if any) the impact on the RR 
when the multivariate time series properties (multicollinearity and time 
and cross-correlation structures) of the covariates are ignored. 

According to Table 5, the estimate of the RR for SPM increases 
approximately by a factor of 1.5 considering the interquartile variation 

Fig. 5. Time series, autocorrelation function and partial autocorrelation function for monthly mean TSP concentration from 2011 to 2014.  

Fig. 6. Time series, autocorrelation function and partial autocorrelation function for monthly maximum TSP concentration from 2011 to 2014.  

Fig. 7. Autocorrelation function (a) and partial autocorrelation function (b) for particles deposition rate from 2011 to 2014 after filtering.  
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equal to 2g/m2 30 days whereas, for PM10 (monthly mean), cRRincreases 
by a factor of 1.6 considering the interquartile variation equal to 5 μg/ 
m3. In the case of TSP (monthly mean), dRR can be interpreted as a factor 
that increases 2.2 when exposed to the interquartile variation equal to 
13 μg/m3. For PM10 (monthly maximum) variable, dRR growths by a 
factor of 2.4 considering the interquartile variation equal to 8 μg/m3 

whereas, for the variable TSP (monthly maximum), cRR is equal to 1.8 
considering the interquartile variation equal to 20 μg/m3. The estimated 
confidence intervals were calculated based on the central limit theorem 

as showed by Souza et al. (2018). The cRR values indicate that, all 

pollutants contributes significantly for the increase of the probability of 
being annoyed with 95% of confidence. It is interesting to note that the 
values of dRR* was not significant in any case. This is not a surprising 
result since the temporal correlation in data was not considered in the 
regression model which lead to underestimating the regression param
eter and inflating the intercept. Consequently, this gives a spurious 
result in the sense that the pollutants don’t make any impact on the 
perceived annoyance. 

The proposed hybrid LOG-PCA-VAR model, in addition to the esti
mation of the impact of particulate matter on the perceived annoyance, 
which indicated significantly contribution of the pollutant to this 

Fig. 8. Autocorrelation function (a) and partial autocorrelation function (b) for monthly mean concentration of PM10 from 2011 to 2014 after filtering.  

Fig. 9. Autocorrelation function (a) and partial autocorrelation function (b) for monthly maximum PM10 concentration from 2011 to 2014 after filtering.  

Fig. 10. Autocorrelation function (a) and partial autocorrelation function (b) for monthly mean TSP concentration from 2011 to 2014 after filtering.  
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response variable, it contributed to show the spurious result when the 
temporal correlation structure in the data is not considered to obtain the 
estimates of a logistic regression model. This corroborates the use of the 
proposed methodology when dealing with regression models in which 
the covariates are multivariate time series and all results are in accor
dance with Souza et al. (2018). 

4. Conclusion 

This study proposes the application of multivariate statistical tech
niques (time series models, principal component analysis and logistic 
regression) to estimate the effect between exposure to particulate matter 
concentrations (SPM, PM10 and TSP) and response of the population 
measured by the perceived annoyance levels. 

The descriptive and graphical analysis motivated the use of the PCA 
technique for the air pollutant data by the initial indication of cross- 
correlation between the covariates (pollutants). The VAR(1) model 
was used to transform the original time series of air pollutants, resulting 
in time uncorrelated data (white noise) before applying the PCA tech
nique. Based on these modelling steps, the PCA variables becomes un
correlated and not cross-correlated. 

The logistic regression model was applied with the level of annoy
ance as the dependent variable and the air pollutants as covariates. 
Moreover, by the new methodology developed in this study (LOG-PCA- 
VAR), the combined effect of particulate matter was analysed and the 
relative risk of annoyance for each original air pollutants was calculated. 
The estimates of relative risk, i.e, cRR; showed that, in general, an in
crease in air pollutant concentrations (i.e., the particulate matter metrics 
examined here: TSP, PM10 and SPM) significantly contributes in 
increasing the probability of being annoyed. 

In summary, the results obtained in this study provide evidence of a 
significant correlation between particulate matter and perceived 

annoyance levels, also indicating that, at least for particulate matter, 
perceived annoyance is not only related to one pollutant but to a group 
of pollutant. In future work, this methodology should be used to analysis 
with other pollutants. Other methodologies, such as bootstrap tech
niques, could also be used to estimate the confidence intervals more 
precisely, and GLARMA modelling could be used to solve the data 
autocorrelation problem. 
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