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ABSTRACT
This paper contributes to the analysis, interpretation and the use of
the principal component analysis in a multivariate time-correlated
linear process. The effect of ignoring the autocorrelation structure of
the vector process is investigated. The results showa spurious impact
of the time-correlation on the eigenvalues. Tomitigate this impact, a
pre-filtering procedure to whiten the data is applied. The methodol-
ogy is used to identify redundant particulate matter measurements
in a region inBrazil. Among theeight consideredmonitoring stations,
it is found that three are needed to characterize the dynamic of the
pollutant in the region.
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1. Introduction

Principal component analysis (PCA) is one of themostwidely usedmultivariate techniques
to reduce the dimension of a data set while keeping most of the variability of the data. To
clarify how important this technique is, Richman [1] has shown that between 1983 and
1985 over 60 PCA applications, or similar techniques have appeared in the meteorologi-
cal/climatological journals. More recently, between 1999 and 2000, 53 of the 215 articles
of the International Journal of Climatology have applied PCA. This represents 25%, a rate
not achieved by any other statistical technique Jollife [2, p.71].

The use of PCA goes beyond reducing the dimension of data. For example, Karar and
Gupta [3] have used PCA as a grouping tool of pollution sources, and Romero et al. [4],
White et al. [5] and Cohen [6] have applied PCA to identify homogeneous sub-regions
of climatic stations in a large geographical area. Besides the use of PCA as a classification
tool, several studies have used the technique to extenuate the multicollinearity in a regres-
sion analysis context and to detect outliers, see e.g. Liu [7], Wang and Pham [8], Souza
et al. [9], Souza et al. [10] and Reisen et al. [11]. PCA has also been used as a step proce-
dure in othermultivariate techniques such as factor analysis, canonical correlation analysis
and discriminant analysis, see e.g. Jollife [2, Chapter 9]. For example, in the financial area,
Matteson and Tsay [12] have proposed a PCA based approach tomodelling the conditional
mean vector and conditional covariance matrix of a stationary multivariate autoregressive
and conditionally heteroscedastic time series. Hu and Tsay [13] have extended the idea of
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PCA to principal volatility component analysis with a focus on the dynamic dependence
of volatility.

In the statistical control process area, Vanhatalo and Kulahci [14] have illustrated the
impact of the autocorrelation on the descriptive ability of PCA and on the monitoring
process control. Vanhatalo et al. [15] have proposed a driven method to determine the
maximum number of lags in dynamic PCA in multivariate time series analysis and a
method for determining the number of principal components (PCs) to retain. In the high-
dimension setting, Hellton and Thoresen [16] have addressed the problem of the impact
of measurement error on PCA.

In the domain of air quality monitoring, the identification of pollution sources using
PCA has been considered bymany authors. For example, in the networkmanagement con-
text, Pires et al. [17,18] have used PCAwithmonitored pollutant concentrations tomanage
the monitoring network of the metropolitan area of Porto (Portugal) to reduce costs. The
authors have proposed to select only one station among those belonging to a same clus-
ter and having similar concentrations behaviours. They have concluded that six stations
instead of ten are sufficient to measure the level of concentration of sulphur dioxide (SO2),
and no more than two stations are required for monitoring the PM less than 10 μm in
diameter (PM10). Lu et al. [19] have evaluated the performance of PCA and cluster analy-
sis for the management of the local air quality monitoring network of Hong Kong (China)
with the aim to identify city areas with similar air pollution behaviours and to locate emis-
sion sources. They have found that the monitoring stations could be grouped into different
classes based on air pollution behaviours.

One of the usual assumptions of PCA is that the data are independent in time. Nev-
ertheless, PCA has been widely used with time series which are time-correlated, without
justification. For example, the pollution data considered in the above cited papers are time-
dependent. Not taking into account the time-dependent structure of the data may lead
to misleading analysis and interpretations. It is essential to recognize that neglecting the
required data assumption when using standard statistical methods like PCA may produce
biased estimates and spurious results see e.g. Vanhatalo and Kulahci [14].

The effect of time-correlation on model estimation using PCA is also one of the main
contribution of Souza et al. [10], where the multicollinearity issue when using pollutants
as covariates in the generalized additive model is solved using PCA, and where it is sug-
gested to use a multivariate time series model to remove the temporal correlation of the
covariates. Following similar lines, Melo [20] and Melo et al. [21] have considered PCA
in a logistic regression model to quantify the association between the pollutants and per-
ceived annoyance. The methodologies proposed in these three papers were mainly based
on the theoretical results discussed inZamprogno [22].Wang andPham [23] have also con-
sidered PCA in the regression model to quantify the relationship between morbidity and
pollutants; however, the temporal correlation of the variables was ignored by the authors.

The purpose of this paper is to generalize the use of PCA,mainly developed for indepen-
dent observations, to multivariate time series. The effect of different correlation structures
of multivariate stationary processes on the interpretation and inference of the PCs is illus-
trated. The study is justified empirically and theoretically, and a real data set of pollutant
concentrations is considered as an example of application. Due to the serial correlation in
the data, the PCs are shown to be autocorrelated and cross-correlated. Thus, this paper
suggests to pre-whiten the data with a linear model to attenuate the time-correlation
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before applying PCA. This whitening technique has been considered by some authors in
the econometric area, but without discussing the consequence of neglecting the tempo-
ral correlation. For example, Matteson and Tsay [12] and Hu and Tsay [13] applied vector
autoregressive (VAR)models to remove the serial correlation of time series of stock returns
before carrying out PCA of the residuals.

The manuscript is structured as follows: Section 2 considers the time series model
and theoretical properties of PCA with autocorrelated data. Monte Carlo simulations are
addressed in Section 3. Section 4 discusses the real data application and Section 5 concludes
the paper.

2. PCAwith time series data

Let Xt = [X1t , . . . ,Xkt]′, t ∈ Z, be a k-dimensional linear process defined by

Xt = μ +
∞∑
j=0

�jεt−j, (1)

where μ ∈ Rk, εt = [ε1t , . . . , εkt]′ is a vector white noise process such that E(εt) = 0 and

�ε(h) = Cov(εt , εt+h) = E(εtε
′
t+h) =

{
�ε if h = 0,
0 if h �= 0,

(2)

�ε is a nonsingular matrix, and the �j’s are k × k matrices of real coefficients satisfying
�0 = I, I being the identity matrix, and

∑∞
j=0 tr(�j�ε�

′
j ) < ∞, where tr(A) denotes the

trace of a square matrix A. It follows from (1) and (2) that Xt is a second-order stationary
process with mean μ and covariance matrix

�X(h) = Cov(Xt ,Xt+h) = E((Xt − μ)(Xt+h − μ)′) =
∞∑
j=0

�j�ε�
′
j+h, (3)

for all h ≥ 0. In the following, it is assumed without loss of generality that μ = 0.
In the analysis of a multivariate data set, PCA looks for linear combinations of the com-

ponents capturing the highest percentage of variation of the data. This technique depends
exclusively on the covariance or the correlationmatrix of the data, see, e.g. Jollife [2]. PCA is
well suited for time-independent observations since it explains only the contemporaneous
correlation of the data and does not take into account the time-correlation. Specifically,
PCA calculates the characteristic roots and vectors of �X(0). Let λ1 ≥ · · · ≥ λk ≥ 0 be
the non necessarily distinct eigenvalues of �X(0) with corresponding orthonormal (with
respect to the usual inner product) eigenvectors p1, . . . , pk (p′

ipi = 1 and p′
ipj = 0 when

i �= j). Then �X(0)pi = λipi for i = 1, . . . , k, and P′�X(0)P = � where P is the k × k
matrix whose ith column is pi and � is the k × k diagonal matrix whose ith diagonal
element is λi, i.e. � = diag(λ1, . . . , λk), see e.g. Banerjee and Roy [24, Theorem 11.27].
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Equivalently, �X(0) admits the so-called spectral decomposition

�X(0) = P�P′ =
k∑

i=1
λipip′

i. (4)

The PC vector process is given by Yt = P′Xt , i.e. Yt = [Y1t , . . . ,Ykt]′ where Yit = p′
iXt

for i = 1, . . . , k. The following proposition summarizes some properties of the covariance
of Yt .

Proposition 2.1: Let Xt be defined by (1), λ1 ≥ . . . ≥ λk ≥ 0 be the eigenvalues of �X(0)
with corresponding orthonormal eigenvectors p1, . . . , pk, and Yit = p′

iXt be the ith PC for
i = 1, . . . , k. Then,

(a) Var(Yit) = p′
i�X(0)pi = λi,

(b) Cov(Yit ,Yjt) = p′
i�X(0)pj = 0 when i �= j,

(c) Cov(Yit ,Yj(t+h)) = p′
iCov(Xt ,X′

t+h)pj = p′
i�X(h)pj for i, j = 1, . . . , k and h �= 0.

Proof: (a) and (b) follow directly from (4) and (c) results from Yit = p′
iXt . �

Remark 2.1: Propositions 2.1(a),(b) appear in Anderson [25] and are the particular cases
of an uncorrelated process, i.e. whenXt = εt in (1). Proposition 2.1(c) shows that the auto-
covariances (i = j) and the cross-covariances (i �= j) of the PCs are non-zero. This induces
some issues discussed below in descriptive and inferential procedures of PCA in the case
of time series.

Remark 2.2: If some eigenvalues are equal, the corresponding eigenvectors and PCs are
not uniquely defined. Nevertheless, the vector space generated by these eigenvectors is
unique, see e.g. Harville [26, p.537–538].

Remark 2.3: The properties of PCs discussed here are based on the eigenvalues and eigen-
vectors of the covariance matrix of Xt . These properties are still valid for the eigenvalues
and eigenvectors obtained from the autocorrelation matrix. It is quite common in prac-
tice to compute PCA based on the autocorrelation matrix, especially when the unities and
the variances of the variables are different. However, this is not the case in the applica-
tion problem discussed in this paper. One of the advantages of using sample PCs based
on the covariance matrix is that the statistical inferences for the population PCs are easier
than those of the sample PCs obtained from the correlation matrix. For a discussion of the
advantages and disadvantages of using sample PCA of the covariance matrix instead of the
autocorrelation matrix, see Jollife [2, Chapter 2].

Remark 2.4: Let Xt be defined by (1). It follows from (3) that

tr(�X(0)) = tr(�ε) + tr

⎛
⎝ ∞∑

j=1
�j�ε�

′
j

⎞
⎠ . (5)
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Let An = ∑n
j=1 �j�ε�

′
j , and Aij

n be the (i, j)th element of An for 1 ≤ i, j ≤ k. Then,

tr
(
lim
n→∞An

)
=

k∑
i=1

(
lim
n→∞Aii

n

)
= lim

n→∞

k∑
i=1

Aii
n = lim

n→∞ tr(An). (6)

Since An is a non-negative definite matrix, tr(An) ≥ 0. Then, limn→∞ tr(An) ≥ 0, and we
deduce from (5) and (6) that tr(�X(0)) ≥ tr(�ε). Now,

tr(�X(0)) = tr(P�P′) = tr(�) = tr(�Y(0)) =
k∑

i=1
λi.

Therefore, the PCs of Xt present more variability than the ones of εt . This can lead to a
wrong use of PCA technique if the time-correlation of Xt is ignored.

A parametric class of models satisfying (1) is the k-dimensional vector seasonal autore-
gressive moving average (VSARMA) process with non-seasonal orders p and q, seasonal
orders P andQ, and season s ∈ N − {0}. This process is defined by the difference equation

φ(B)	(Bs)Xt = θ(B)�(Bs)εt , (7)

where εt is a vector white noise with E(εt) = 0 and �ε(h) given by (2), and B is the back-
ward operator, i.e. BXt = Xt−1 for any process Xt . The matrix-valued polynomials φ(·),
θ(·), 	(·) and �(·) given by

φ(z) = I − φ1z − · · · − φpzp,

θ(z) = I + θ1z + · · · + θqzq,

	(z) = I − 	1z − · · · − 	PzP,

�(z) = I + �1z + · · · + �QzQ,

satisfy that det(φ(z)	(zs)) �= 0 and det(θ(z)�(zs)) �= 0 for all z ∈ C such that |z| ≤ 1.
These two conditions are known as the causality and invertibility properties, respectively.
Additional conditions have to be imposed in order to obtain an identifiable model, see e.g.
Brockwell and Davis [27, p.431] and Reinsel [28, Section 2.3]. In (7), the matrix parame-
ters φi’s, θi’s, 	i’s and �i’s are unknown and have to be estimated from the observed data
X1, . . . ,Xn.

The VSARMA process has a short-memory correlation structure in the sense that the
sequence of matrices �X(h) for h ∈ Z is summable. The vector seasonal autoregressive
fractionally integratedmoving average (VSARFIMA) process is a linear process defined by
an extension of the difference equation (7). This process has a long-memory behaviour
in the sense that the matrices �X(h) are only square summable, see Chung [29]. A
VSARFIMA model is used in Section 4.

As mentioned in Remark 2.4, when Xt is time-correlated, the PCs of Xt have larger
variances than the ones of εt . One way to mitigate this effect is to apply to Xt a multivariate
linear filter, such as theVSARMAfilter before applying PCA. In this context, PCA is applied
to εt in place of Xt in (7).
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The VAR(1) model is the particular case of (7) whereXt satisfies the difference equation
Xt = 	Xt−1 + εt with	 amatrix parameter. This model is widely used inmodellingmul-
tivariate time series. Proposition 2.2 illustrates the effect of temporal correlation on the PCs
Yt whenXt is a VAR(1) process. This result can be extended tomore general processes. For
example, this is well-known that the VAR(p)model can be written as a VAR(1) process see
e.g. Lutkepohl [30, p.15] and Hamilton [31, p.259].

Proposition 2.2: Let Xt be a stationary VAR(1) process. Then �X(h) = �X(0)(	h)′ and
�Y(h) = �P′(	h)′P for all h ≥ 0.

Proof: It follows from Brockwell andDavis [27, Example 11.3.1] that�j = 	j in (1). Then
(3) implies that �X(h) = �X(0)(	h)′ for all h ≥ 0. Since Yt = P′Xt , �Y(h) = P′�X(h)P =
P′�X(0)(	h)′P = P′P�P′(	h)′P = �P′(	h)′P for all h ≥ 0. �

Remark 2.5: Consider the particular VAR(1) process where 	 = diag(φ1, . . . ,φk) with
|φi| < 1 for i = 1, . . . , k. Then, it results from (3) that the (i, j)th element of �X(h), �ij

X(h),
is given by

�
ij
X(h) =

∞∑
l=0

φl
i �

ij
ε φl+h

j = φh
j /(1 − φiφj)�

ij
ε , (8)

for all h ≥ 0. Therefore,

tr(�Y(0)) = tr(�X(0)) = tr(�ε) +
k∑

i=1
φ2
i /(1 − φ2

i )�
ii
ε . (9)

It follows from (9) that the variability of the PCs of Xt increases as |φi| increases, and may
be much larger than the one of the PCs of εt . Furthermore, since �Y(h) = �P′(	h)′P, its
(i, j)th element, �ij

Y(h), is given by

�
ij
Y(h) = λi

k∑
l=1

φh
l pli plj, (10)

for all h ≥ 0, where pi = [p1i, . . . , pki]′.
Suppose that φi = φ for i = 1, . . . , k. Then,�X(h) = φh�X(0) = φh/(1 − φ2)�ε for all

h ≥ 0. The eigenvectors of �X(h) and �ε are the same, while the eigenvalues of �X(h) are
the ones of �ε multiplied by φh/(1 − φ2). We have �Y(h) = �P′(	h)′P = φh�. Then,
when�ε is not diagonal, the components of Xt are cross-correlated, while the components
of the PCs are not, for all h ≥ 0. Observe, using (10), that the components of the PCs are
generally cross-correlated when the parameters φi’s are not all equal.

TheVMA(1)model is the particular case of (7) whereXt satisfies the difference equation
Xt = εt + �εt−1 with� amatrix parameter. Proposition 2.3 gives the expressions of�X(h)
and �Y(h) when Xt is a VMA(1) process. As for the VAR(1) model, this result can be
extended to more complicated processes.
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Proposition 2.3: Let Xt be a VMA(1) process where all the eigenvalues of � are less than
one in modulus. Then

�X(h) =

⎧⎪⎨
⎪⎩

�ε + ��ε�
′ if h = 0,

�ε�
′ if h = 1,

0 if h > 1,
and �Y(h) =

⎧⎪⎨
⎪⎩

� if h = 0,
P′�ε�

′P if h = 1,
0 if h > 1.

Proof: The expression of�X(h) follows from the difference equationXt = εt + �εt−1. On
the other hand, �Y(h) = P′�X(h)P for h ∈ Z. �

Remark 2.6: Consider the particular VMA(1) process where � = diag(θ1, . . . , θk) with
|θi| < 1 for i = 1, . . . , k. We deduce from Proposition 2.3 that

�
ij
X(h) =

⎧⎪⎨
⎪⎩

(1 + θiθj)�
ij
ε if h = 0,

θj�
ij
ε if h = 1,

0 if h > 1.

Therefore,

tr(�Y(0)) = tr(�X(0)) = tr(�ε) +
k∑

i=1
θ2i �ii

ε . (11)

It follows from (11) that tr(�ε) ≤ tr(�Y(0)) ≤ 2tr(�ε).
If, θi = θ for i = 1, . . . , k, �ε , �X(0) and �X(1) have the same eigenvectors, while the

eigenvalues of�X(0) and�X(1) are the ones of�ε multiplied by 1 + θ2 and θ , respectively.
Furthermore, in this case, we deduce fromProposition 2.3 that�Y(1) = θP′�εP = θ/(1 +
θ2)P′�X(0)P = θ/(1 + θ2)�. Then, the components of the PCs are not cross-correlated
for all h ≥ 0.

In practice, �X(0) is unknown and must be estimated from a set of observations
X1, . . . ,Xn of Xt . The sample estimate of �X(0) is

�̂X(0) = 1
n

n∑
t=1

XtX′
t , (12)

�̂X(0) is symmetric and non-negative definite with spectral decomposition

�̂X(0) = BLB′, (13)

where L = diag(l1, . . . , lk), l1 ≥ . . . ≥ lk ≥ 0 are the eigenvalues of �̂X(0), and B is an
orthonormal matrix whose ith column bi is an eigenvector associated to li for i = 1, . . . , k.
Each eigenvalue li is an estimate ofλi. Suppose that the eigenvalues of�X(0) are distinct, i.e.
λ1 > . . . > λk. In this case, P is unique in (4). Let D = √

n(L − �) and G = √
n(B − P).

Under additional assumptions, Taniguchi andKrishnaiah [32, Theorem1] have shown that
formodel (1), the joint distribution ofD andG converges as n tends to infinity. IfXt is Gaus-
sian, then the limiting joint distribution of D and G is normal with D and G independent
and the diagonal elements of D are independent.
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Amajor concern about using PCA is howmany PCs should be selected. Several criteria
have been proposed in the literature such as the eigenvalues plot of Jollife [2] and the mean
eigenvalue test of Perez-Neto et al. [33]. Assume that the random variables Xt are mutu-
ally independent and identically distributed with finite moments and λ1 > . . . > λk > 0.
Fujikoshi [34, Theorem 1] has generalizedAnderson [25, Theorem 13.5.1] to nonGaussian
data and has shown that

√
n(li − λi) has the limiting normal distribution N(0, 2λ2i + κ i

4),
where κ i

4 is the fourth-order cumulant of the ith component Xit of Xt for all i = 1, . . . , k.
Therefore, an asymptotic confidence interval (ACI) of significance level α for λi is given by

li −
√
2l2i + κ̂ i

4
n

z α
2

≤ λi ≤ li +
√
2l2i + κ̂ i

4
n

z α
2
, (14)

where κ̂ i
4 is the sample estimate of κ i

4, F(zα/2) = 1 − (α/2) and F is the cumulative dis-
tribution function of the N(0, 1) random variable. Now, let τm = (λ1 + · · · + λm)/(λ1 +
· · · + λk) be the fraction of the variance explained by the first m PCs, where 1 ≤ m < k,
and Rm = (l1 + · · · + lm)/(l1 + · · · + lk) be an estimate of τm. Fujikoshi [34, Theorem 3]
implies that

√
n(Rm − τm) has the limiting normal distribution N(0,

∑k
i=1 T

2
i (2λ

2
i + κ i

4)),
where Ti = (ci − τm)/(λ1 + · · · + λk), and ci = 1 for i = 1, . . . ,m, ci = 0 for i = m +
1, . . . , k. Therefore, an ACI of significance level α for τm is

Rm −
√∑k

i=1 T̂
2
i (2l

2
i + κ̂ i

4)

n
z α
2

≤ τm ≤ Rm +
√∑k

i=1 T̂
2
i (2l

2
i + κ̂ i

4)

n
z α
2
, (15)

where T̂i = (ci − Rm)/(l1 + · · · + lk).

3. Numerical experiments

This section presents finite sample size studies to illustrate the effect of time-correlation on
the eigenvalues of �X(0) and on the interpretation of PCA. For this purpose, we consider
VAR(1) processes with different correlation structures. The calculus and simulations were
coded with R Core Team [35, Version 3.6.2] and are available upon request.

Let Xt = 	Xt−1 + εt , where matrix �ε is given by

�ε =

⎡
⎢⎢⎣
10 0 0 0
0 5 0 0
0 0 3 0
0 0 0 1

⎤
⎥⎥⎦ (16)

and the matrix parameters 	 are displayed in Table 1. The correlation structures of Xt
depend on 	. The white noise model Xt = εt is denoted by Model 1. Since the matrices of
the parameters of Models 2 and 3 are diagonal and �ε is also diagonal, it follows from (8)
that the covariance matrices of these models are also diagonal and have the same eigen-
vectors which correspond to the natural basis of R4. Since all φi’s are equal in Model 2, the
eigenvalues of �X(0) in Models 1 and 2 are proportional, which is not the case in Models 1
and 3.

Contrarily to the three first models, Models 4 and 5 present cross-correlations
between the components of Xt at different lags h. According to Proposition 2.2, �X(h) =
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Table 1. Matrix parameters	 of VAR(1) in Models 2 to 5.

Model 2 Model 3

0.3 0.0 0.0 0.0 0.8 0.0 0.0 0.0
0.0 0.3 0.0 0.0 0.0 0.5 0.0 0.0
0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0
0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3

Model 4 Model 5

0.3 0.0 0.1 0.1 0.3 0.5 0.7 0.4
0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0
0.2 0.0 0.3 0.0 0.0 0.0 0.3 0.0
0.0 0.1 0.0 0.3 0.8 0.6 0.0 0.3

Table 2. Covariance matrices �X(0) of the VAR(1) Models 2 to 5.

Model 2 Model 3

10.99 0.00 0.00 0.00 27.78 0.00 0.00 0.00
0.00 5.49 0.00 0.00 0.00 6.67 0.00 0.00
0.00 0.00 3.30 0.00 0.00 0.00 3.30 0.00
0.00 0.00 0.00 1.10 0.00 0.00 0.00 1.01

Model 4 Model 5

11.11 0.01 0.88 0.04 29.29 1.09 0.79 25.43
0.01 5.49 0.00 0.18 1.09 5.49 0.00 1.37
0.88 0.00 3.90 0.00 0.79 0.00 3.30 0.21
0.04 0.18 0.00 1.17 25.43 1.37 0.21 38.98

�X(0)(	h)′ for all h ≥ 0. Therefore, if the entries of �X(0) are nonnegative, large posi-
tive entries of 	 implies large positive cross-covariances. In this sense, Model 5 presents
stronger cross-covariances thanModel 4. These correlation structures may seriously affect
the analysis and interpretation of the PCA. In particular, a significant impact occurs when
using Models 4 and 5, which have large positive degrees of the correlations. These issues
are discussed as follows.

The covariance matrices �X(0) of the VAR(1) Models 2 to 5 are displayed in Table 2.
As expected, Model 5 displays the largest covariances. For each model, it can be seen that
tr(�X(0)) ≥ tr(�ε), as mentioned in Remark 2.4.

Table 3 shows, for each VAR(1) model, the eigenvalues λi’s of �X(0) with their respec-
tive percentage of variability λi/(λ1 + · · · + λ4). As expected, Models 1 and 2 display the
same percentages since the λi’s are proportional. Model 3 presents more variability than
Models 1 and 2 because λ1 is much larger than the other eigenvalues. Since the parameters
	 of Models 2 and 4 are close, the associated eigenvalues of �X(0) and their percentages of
variability are similar. A very distorted case of the percentages is observed betweenModel 2
and Model 5. The large positive cross-covariance in Model 5 drastically increases the vari-
ability of the eigenvalues of �X(0), and the first PC captures almost all the variability. This
is a problem of high practical relevance, for example in the context of reducing the data
dimension.
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Table 3. Eigenvalues of �X(0) of the VAR(1) Models 1 to 5 with their percentages of variability.

Model λ1 λ2 λ3 λ4 % λ1 % λ2 % λ3 % λ4

1 10.00 5.00 3.00 1.00 52.63 26.32 15.79 5.26
2 10.00 5.49 3.30 1.10 52.63 26.32 15.79 5.26
3 27.78 6.67 3.30 1.01 71.68 17.20 8.51 2.61
4 11.21 5.50 3.79 1.16 51.73 25.39 17.51 5.37
5 60.09 8.29 5.44 3.24 77.98 10.75 7.06 4.21

Table 4. Matrix parameters	 of VAR(1) Models 7 to 10.

Model 7 C Model 8

0.2 0.0 0.0 0.0 −0.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0
0.0 0.0 −0.5 0.0 0.0 0.0 −0.1 0.0
0.0 0.0 0.0 −0.3 0.0 0.0 0.0 0.9

Model 9 Model 10

0.4 0.1 0.3 0.1 0.6 0.3 0.6 0.03
0.0 0.8 0.4 0.0 −0.1 0.2 −0.1 0.2
0.2 0.0 0.3 0.0 0.1 −0.8 0.4 0.5
0.0 0.0 0.6 −0.4 0.2 0.0 0.1 −0.5

Now, more general VAR(1) models are considered in the study. The matrix�ε becomes

�ε =

⎡
⎢⎢⎣
127 30 47 62
30 58 33 70
47 33 64 58
62 70 58 172

⎤
⎥⎥⎦ ,

and the white noise model Xt = εt is denoted by Model 6. The matrix parameters 	 are
displayed in Table 4. Note that some autoregressive parameters are negative, which implies
that the models may produce negative autocorrelations. These negative correlations may
lead to different impacts on the inferential analysis compared to the previous cases. The
covariance matrices �X(0) of the VAR(1) Models 7 to 10 are presented in Table 5. For each
model, we have tr(�X(0)) ≥ tr(�ε) in agreement with Remark 2.4. The trace of �X(0)
represents the total variability of the PCs of Xt and increases fromModel 6 to Model 10.

Table 6 shows the eigenvalues λi’s of the matrices �X(0) for each VAR(1) model and
their respective percentage of variability λi/(λ1 + · · · + λ4). Comparing with Table 3, it
can be seen that the cross-covariances in Models 7 to 10 do not have drastic effects in the
interpretation of PCA compared toModel 6. On the contrary, the percentages of variability
are very stable across different correlation structures.

Samples of size n = 1000 of Models 6, 8, 9 and 10 with Gaussian innovations, were
generated and the sample autocorrelation and cross-correlation functions (ACF and CCF)
of the PCs were computed. The number of replications was 500. The mean of some of
these quantities are displayed in Figures 1 and 2 for Models 6 and 8 and Models 9 and 10,
respectively.

Figure 1(a) shows that the PCs are neither autocorrelated nor cross-correlated in the
case of a white noise. Figure 1(b) shows that the PCs may be autocorrelated and cross-
correlated when the matrix parameter 	 is diagonal but the diagonal elements are not all
equal. These features become more clear for Models 9 and 10. Indeed, Figure 2 shows that
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Table 5. Covariance matrices �X(0) of the VAR(1) Models 7 to 10.

Model 7 Model 8

132.29 30.00 42.73 54.39 169.33 24.00 49.47 44.29
30.00 58.00 33.00 70.00 24.00 77.33 31.43 116.67
42.73 33.00 85.33 89.23 49.47 31.43 64.65 53.70
54.39 70.00 89.23 337.25 44.29 116.67 53.70 477.78

Model 9 Model 10

240.04 193.95 104.52 81.18 575.20 44.82 183.86 120.35
193.95 399.10 110.20 101.54 44.82 74.72 43.80 46.26
104.52 110.20 94.66 72.40 183.86 43.80 175.62 42.00
81.18 101.54 72.40 203.96 120.35 46.26 42.00 234.47

Table 6. Eigenvalues of�X(0) of the VAR(1) Models 6 to 10 with their percent-
ages of variability.

Model λ1 λ2 λ3 λ4 % λ1 % λ2 % λ3 % λ4

6 276.42 87.71 34.22 22.65 65.66 20.83 8.13 5.38
7 402.11 125.27 50.32 35.17 65.61 20.44 8.21 5.74
8 525.90 177.62 54.26 31.32 66.65 22.51 6.88 3.97
9 626.19 164.90 112.36 34.31 66.78 17.58 11.98 3.66
10 690.65 204.24 115.34 49.78 65.16 19.27 10.88 4.70

Figure 1. ACF and CCF plots of some sample PCs of Models 6 and 8. (a) Model 6 and (b) Model 8.

the full correlation structure of the data is transferred to the PCs in the case of general
matrices 	 and �ε . These empirical evidences corroborate and illustrate Proposition 2.1.

The numerical experiments discussed in this section confirm that time-correlations in
the vector Xt have impacts on PCA. Therefore, it is necessary to introduce procedures
that allow the use of PCA with multivariate time-correlated data. This paper suggest to
pre-processing the data with a multivariate linear filter in order to whiten the data before
applying PCA. This is explored in the application Section. Note that transforming the data
with linear filters to attenuate the temporal structure in multivariate techniques has been
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Figure 2. ACF and CCF plots of some sample PCs of Models 9 and 10. (a) Model 9 and (b) Model 10.

Figure 3. Plots of the daily averages of the PM10 concentrations of the AAQMN.

also addressed in the recent work of Jaimungal and Ng [36], Greenaway-McGrevy et al.
[37] and Hu and Tsay [13].

4. Application to PM10 data

PCA is used here to identify cities areaswith similar PM10 concentrations, without ignoring
the time dependence of the data. We investigate whether or not the temporal correlation
of the variables affects PCA and its interpretation. In general, this issue is not addressed in
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Figure 4. Sample ACF of the daily average of the PM10 concentrations.

Table 7. Fractional parameters estimates for PM10 data.

Station d̂ σ̂ (d̂) D̂ σ̂ (D̂)

Laranjeiras 0.2588 0.0019 0.1170 0.0093
Carapina 0.2792 0.0022 0.1787 0.0107
Camburi 0.2377 0.0079 0.2282 0.0393
Sua 0.2339 0.0048 0.0694 0.0240
VixCentro 0.2194 0.0027 0.1052 0.0132
Ibes 0.2801 0.0022 0.0512 0.0112
VVCentro 0.2832 0.0029 0.1270 0.0144
Cariacica 0.1992 0.0026 0.0844 0.0128

applied works, see e.g. Pires et al. [17,18]. All the results in this section were also obtained
with R Core Team [35, Version 3.6.2].

The data set was collected at the automatic air quality monitoring network (AAQMN)
in the Greater Vitória Region (GVR) in Brazil. The eight monitoring stations are located at
urban sites of four cities in the GVR. Additionally to PM10 concentrations, the AAQMN
monitors the total suspended particles (TSP), ozone (O3), nitrogen oxides (NOx), carbon
monoxide (CO), hydrocarbons (HC) and meteorological variables. The PM10 concentra-
tions (μg/m3) were measured in eight stations, from January 2005 to December 2009. The
daily averages at the eight stations constitute the time seriesXt which are plotted in Figure 3.

The sample ACF of each component of Xt are plotted in Figure 4. This figure shows a
strong weekly seasonal behaviour which is expected with daily pollution data. In addition,
the sample autocorrelations are positive and decrease slowly, which is typical of a long-
memory seasonal time series.

We fit a VSARFIMAmodel with season s = 7 to Xt . The estimator suggested by Reisen
et al. [38] is used to estimate the fractional parameters at the lung-run (d) and at the
seasonal period s=7 (D) with the bandwidth m = n0.5. The estimates (d̂, D̂) and their
standard deviation (σ̂ (d̂), σ̂ (D̂)) are displayed in Table 7. We see that these fractional
parameters are significant for each station.
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Figure 5. Sample ACF of the residuals of the fitted VSARFIMAmodel to PM10 concentrations.

For each i = 1, . . . , 8, we build the series Ẑit = (1 − B)d̂i(1 − Bs)D̂iXit and we fit a
VSARMA model (7) to Ẑt . Following the standard methodology, we choose the orders
(p, q, P,Q) with an information criterion, namely the bias-corrected Akaike information
criterion (AICC), see Brockwell and Davis [27, Section 9.2]. This criterion selects a simple
VAR(1) model with the following matrix parameter

	̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.27 −0.13 0.17 −0.06 −0.03 0.13 −0.01 0.02
0.02 −0.05 0.10 0.01 −0.05 −0.01 0.08 0.12
0.08 −0.05 0.07 −0.04 0.07 0.07 −0.05 0.09
0.18 −0.07 0.04 0.06 0.01 0.02 0.01 0.06
0.09 −0.01 0.04 0.01 0.04 −0.03 0.07 0.09
0.08 −0.01 0.09 −0.02 −0.06 0.09 0.00 0.08
0.06 0.02 0.02 −0.05 0.02 −0.03 0.09 0.06
0.04 0.00 0.06 0.00 −0.08 0.06 0.05 0.06

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Apart from the first diagonal element, all the coefficients of 	̂ are quite small, which indi-
cates that the fractional filtering giving Ẑt extracts almost all the temporal correlation of
Xt . Figure 5 plots the sample ACF of each component of the residual ε̂t = Ẑt − 	̂Ẑt−1 and
clearly shows that these components are white noises. Note that, even if the nondiagonal
autoregressive parameters are very small, they should not be ignored in the use of PCA.

Now, we investigate the temporal correlation effect in the analysis and interpretation
of PCA applied to PM10 data. The sample estimate �̂X(0) of �X(0) is given by (12)
and its spectral decomposition is (13). Let �̂ε̂(0) = (1/n)

∑n
t=1 ε̂t ε̂

′
t with the spectral

decomposition �̂ε̂(0) = CMC′, whereM = diag(m1, . . . ,mk),m1 ≥ . . . ≥ mk ≥ 0 are the
eigenvalues of �̂ε̂(0), andC is an orthonormalmatrix whose ith column ci is an eigenvector
associated tomi for i = 1, . . . , k.

As addressed in Remark 2.3, in practice, it is more common to compute the PCs based
on the eigenvectors and eigenvalues derived from standardized variables, i.e. from the cor-
relation matrix. This is the cases when the components of the vector Xt have distinct units
and very different variances. The PM10 concentrations are measured with the same unit
and have similar standard deviations; the minimum and maximum standard deviations
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Table 8. PCA of original and filtered PM10 concentrations.

PCA of �̂X (0) PCA of �̂ε̂(0)

Station 1 2 3 4 1 2 3 4

Laranjeiras −0.3002 0.7193 −0.1756 0.1460 −0.3067 0.7090 −0.0529 0.1606
Carapina −0.3554 −0.4004 0.2628 0.1750 −0.3536 −0.5233 0.0368 0.0669
Camburi −0.3472 0.1700 0.0502 0.7019 −0.3166 0.0560 0.7079 0.5055
Sua −0.3632 0.2163 0.0406 −0.6118 −0.3722 0.2283 −0.3546 −0.1360
VixCentro −0.3864 −0.2265 −0.1026 −0.1629 −0.3856 −0.0222 −0.2168 −0.2125
Ibes −0.3869 0.1787 0.2359 −0.2271 −0.3935 0.0625 −0.1563 0.1426
VVCentro −0.3055 −0.2942 −0.8391 0.0141 −0.3222 −0.0087 −0.4764 −0.7571
Cariacica −0.3721 −0.2766 0.3542 0.0507 −0.3669 −0.4044 −0.2652 0.2383
Eigenvalue 4.8971 0.7744 0.6282 0.4973 4.5586 0.7462 0.6412 0.6050
Proportion 61.22 9.68 7.85 6.22 56.98 9.32 8.01 7.56
Cumulative 61.22 70.90 78.75 84.97 56.98 66.30 74.31 81.87

are 7.4µg/m3 (Cariacica) and 13.12µg/m3 (Laranjeiras). In addition, the percentages of
cumulative variation explained by the PCs obtained from the autocorrelation and autoco-
variancematrices are very close. For example, the cumulative percentages for the first three
PCs are 60.40, 72.24, 82.94 and 61.21, 70.89, 78.75 in the first and second cases, respectively.
Thus, there do not seem to be any noticeable differences between the PCs from the sample
correlation and the autocovariance matrices.

In Table 8, the four columns corresponding to the PCAof �̂X(0) display the eigenvectors
bi’s, the eigenvalues li’s, the proportions li/(l1 + · · · + l8)’s and the cumulative proportions
(l1 + · · · + li)/(l1 + · · · + l8)’s for i = 1, . . . , 4. The four columns corresponding to the
PCA of �̂ε̂(0) display the eigenvectors ci’s, the eigenvaluesmi’s, the proportionsmi/(m1 +
· · · + m8)’s and the cumulative proportions (m1 + · · · + mi)/(m1 + · · · + m8)’s for i =
1, . . . , 4. For both PCA, the main part of the variability is captured by the first PC, namely
61% for the PCA of �̂X(0) and 57% for the PCA of �̂ε̂(0). The proportions for the other
PCs are quite similar for both PCA. To group the monitoring stations in classes, we select
for each PC the stations with the highest factor loading in absolute value. The coefficients
in bold are larger than 0.37 in absolute value. Selecting these coefficients, we retain the
class CL1 : VixCentro, Ibes and Cariacica for the 1st PC of �̂X(0), the class CL2 : Laran-
jeiras and Carapina for the 2nd PC of �̂X(0), the class CL3 : VVCentro for the 3rd PC
of �̂X(0), the class CL4 : Camburi and Sua for the 4th PC of �̂X(0), and the class CL1 :
Sua, VixCentro and Ibes for the 1st PC of �̂ε̂(0), the class CL2 : Laranjeiras, Carapina and
Cariacica for the 2nd PC of �̂ε̂(0), and the classes CL3 : CL4 : Camburi and VVCentro
for the 3rd and the 4th PC of �̂ε̂(0), respectively. Note that four PCs are necessary in the
PCA of �̂X(0) to encompass the eight stations, while three PCs are enough in the PCA
of �̂ε̂(0).

Figure 6 shows the average daily profile of daily average PM10 concentrations at the
monitoring stations, grouped by the correspondent PC/CL category. Similar profiles of
PM10 concentrations are observed in all sites belonging to the same PC/CL category. How-
ever, it is clear that the associations PC/CL obtained with �̂ε̂(0) are better balanced and
discriminate the data more clearly.

Following the same approach as Pires et al. [17,18], the number of monitoring sta-
tions that should be maintained among the eight corresponds to the maximum number
of selected PCs. Based on the PCs of �̂X(0), the four stations Ibes, Laranjeiras, VVCentro
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Figure 6. Average daily profile of PM10 concentrations grouped by the PC/CL category.

Figure 7. Sample ACF of the PCs of original and filtered PM10 concentrations. (a) PCs of �̂X(0) and (b)
PCs of �̂ε̂(0).

and Camburi are maintained, while the analysis of the PCs of �̂ε̂(0) leads to retain only the
three stations, Ibes, Laranjeiras and Camburi. The equipment of the others stations may be
moved to alternative areas of interest to cover a larger area of the GVR.

Figure 7 plots the sample ACF of the PCs of original and filtered PM10 concentrations.
Figure 7(a) shows that the PCs are autocorrelated in the case of a correlated time series.
Since the filtered time series ε̂t is almost a white noise, the autocorrelations in Figure 7(b)
are very small.
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5. Conclusion

This paper has investigated the effect of time-correlation on the PCA technique. It was
shown that the PCs are generally cross-correlated and present more variability compared
to the case of time uncorrelated data. Explicit calculations have illustrated the effect of
time-correlation on the PCs when the data follow a VAR(1) and a VMA(1) model. The
theoretical results were illustrated empirically through Monte Carlo simulations. It was
found that large positive cross-covariance radically increases the variability of the PCs, and
the first PC captures almost all the variability. Therefore, when the data are strongly time-
correlated, it is recommended to apply a linear filter for whitening the data before PCA.
The proposed methodology was applied to PM10 concentrations to identify redundant air
quality measurements. The PCA of the filtered data is more parsimonious and leads to
retaining fewer monitoring stations.
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